1. 25 8月, 2018 1 次提交
  2. 05 7月, 2018 1 次提交
  3. 20 6月, 2018 1 次提交
  4. 21 5月, 2018 1 次提交
  5. 04 5月, 2018 1 次提交
  6. 03 5月, 2018 1 次提交
  7. 28 4月, 2018 1 次提交
  8. 25 4月, 2018 1 次提交
  9. 08 3月, 2018 1 次提交
  10. 12 2月, 2018 1 次提交
  11. 10 2月, 2018 2 次提交
  12. 03 2月, 2018 1 次提交
  13. 25 12月, 2017 1 次提交
  14. 12 12月, 2017 2 次提交
    • Q
      Refine device context (#6433) · 61ec0b95
      QI JUN 提交于
      There are mainly following fixes:
      
      - take `DeviceContext` as the template parameter of math functors and OpKernel instead of `Place`
      - remove `eigen_device` interface in base class  `DeviceContext`
      - remove `GetEigenDevice` interface in `ExecutionContext` and base class `DeviceContext`
      - remove unused `platform::EigenDeviceConverter`
      - rename `REGISTER_OP_GPU_KERNEL` to `REGISTER_OP_CUDA_KERNEL`
      - rename `USE_GPU_ONLY_OP` to `USE_CUDA_ONLY_OP`
      61ec0b95
    • T
      unify MKL macro definition · 69b44f2f
      tensor-tang 提交于
      69b44f2f
  15. 27 11月, 2017 1 次提交
  16. 26 11月, 2017 1 次提交
    • D
      Feature/copytensor (#5455) · 45062fe5
      dzhwinter 提交于
      * "make global tensor function independently"
      
      * "replace functor"
      
      * "fix inline template error"
      
      * "fix tensor array with CopyFrom"
      
      * "fix other case use CopyFrom"
      
      * "move the op interface hardly"
      
      * "fix operators"
      
      * "fix typo"
      
      * "delete dynamic recurrent rnn and fix gru_unit in debugmode"
      
      * "fix unique_ptr copy"
      
      * "fix cuda copy"
      
      * "fix namespace error"
      
      * "removed nccl python test"
      
      * "fix include error"
      
      * "fix typo"
      
      * fix copy util test
      45062fe5
  17. 14 11月, 2017 1 次提交
  18. 11 11月, 2017 1 次提交
  19. 09 11月, 2017 1 次提交
  20. 08 11月, 2017 1 次提交
  21. 26 10月, 2017 1 次提交
  22. 18 10月, 2017 1 次提交
    • M
      MatMul operator (#4856) · 16489827
      Markus Kliegl 提交于
      * initial matmul operator
      
      Similar to np.matmul, but also has transpose_X and transpose_Y flags,
      and only supports tensors from rank 1 to 3 inclusive.
      
      For GPU, uses cublas?gemmStridedBatched. For CPU, uses
      cblas_?gemm_batch if available via MKL; otherwise a simple serial
      implementation that loops over the batch dimension is employed for now.
      16489827
  23. 16 10月, 2017 1 次提交
  24. 14 10月, 2017 2 次提交
  25. 29 9月, 2017 1 次提交
  26. 21 9月, 2017 1 次提交
  27. 19 9月, 2017 1 次提交
  28. 22 8月, 2017 2 次提交
  29. 21 8月, 2017 3 次提交
  30. 19 8月, 2017 1 次提交
  31. 14 8月, 2017 3 次提交
  32. 10 8月, 2017 1 次提交