Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f32f84a4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f32f84a4
编写于
3月 11, 2021
作者:
W
WangXi
提交者:
sandyhouse
3月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
c7472f16
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
254 addition
and
124 deletion
+254
-124
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
...tributed/fleet/meta_optimizers/sharding/offload_helper.py
+124
-0
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+130
-124
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
0 → 100644
浏览文件 @
f32f84a4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
..common
import
is_optimizer_op
,
OP_ROLE_KEY
,
OpRole
from
paddle.fluid
import
unique_name
class
OffloadHelper
(
object
):
cpu_place_type
=
0
cuda_place_type
=
1
cuda_pinned_place_type
=
2
def
__init__
(
self
):
pass
"0: dst is on CPUPlace. "
"1: dst is on CUDAPlace. "
"2: dst is on CUDAPinnedPlace. "
def
_insert_memcpy_op
(
self
,
block
,
idx
,
src_name
,
dst_name
,
dst_place_type
):
src_var
=
block
.
var
(
src_name
)
dst_var
=
block
.
var
(
dst_name
)
block
.
_insert_op_without_sync
(
idx
,
type
=
'memcpy'
,
inputs
=
{
'X'
:
src_var
},
outputs
=
{
'Out'
:
dst_var
},
attrs
=
{
'dst_place_type'
:
dst_place_type
,
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
def
_insert_fetch_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
self
.
_insert_memcpy_op
(
block
,
idx
,
src_name
,
dst_name
,
OffloadHelper
.
cuda_place_type
)
def
_insert_offload_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
self
.
_insert_memcpy_op
(
block
,
idx
,
src_name
,
dst_name
,
OffloadHelper
.
cuda_pinned_place_type
)
def
_get_offload_var_name
(
self
,
name
):
return
unique_name
.
generate
(
name
+
'@offload'
)
def
_create_offload_var
(
self
,
var_name
,
offload_var_name
,
blocks
):
for
block
in
blocks
:
var
=
block
.
var
(
var_name
)
var
.
persistable
=
False
offload_var
=
block
.
create_var
(
name
=
offload_var_name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
persistable
=
True
)
def
offload
(
self
,
block
,
startup_block
):
"""
(m1, m2) = prefetch(m1@offload, m2@offload)
(m1out, m2out, pout) = adam(m1, m2, p)
(m1@offload, m2@offload) = memcpy(m1, m2)
"""
vars_name_to_offload_name
=
dict
()
# main_block add offload
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
not
is_optimizer_op
(
op
):
break
vars_name
=
[]
if
op
.
type
==
"adam"
:
# {Moment1Out = [''], Moment2Out = [''], ParamOut = ['']} =
# adam(inputs={Moment1 = [''], Moment2 = [''], Param = ['']})
vars_name
.
append
(
op
.
desc
.
input
(
"Moment1"
)[
0
])
vars_name
.
append
(
op
.
desc
.
input
(
"Moment1"
)[
0
])
elif
op
.
type
==
'momentum'
:
pass
elif
op
.
type
==
'lars'
:
pass
elif
op
.
type
==
'lamb'
:
pass
# step1: create and init offload_var
for
var_name
in
vars_name
:
assert
var_name
not
in
vars_name_to_offload_name
offload_var_name
=
self
.
_get_offload_var_name
(
var_name
)
vars_name_to_offload_name
[
var_name
]
=
offload_var_name
self
.
_create_offload_var
(
var_name
,
offload_var_name
,
[
block
,
startup_block
])
# step2: insert offload op
for
var_name
in
vars_name
:
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
self
.
_insert_offload_op
(
block
,
idx
+
1
,
var_name
,
offload_var_name
)
# step3: insert fetch op
for
var_name
in
vars_name
:
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
self
.
_insert_fetch_op
(
block
,
idx
,
offload_var_name
,
var_name
)
# startup_block add offload
visited_vars
=
set
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
continue
if
out_name
in
vars_name_to_offload_name
:
var_name
=
out_name
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
# insert offload op after var is generated
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
offload_var_name
)
visited_vars
.
add
(
out_name
)
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
f32f84a4
...
@@ -22,6 +22,7 @@ from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, Progr
...
@@ -22,6 +22,7 @@ from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, Progr
from
paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper
import
FP16Utils
from
paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper
import
FP16Utils
from
paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper
import
WeightDecayHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper
import
WeightDecayHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper
import
GradientClipHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper
import
GradientClipHelper
from
.sharding.offload_helper
import
OffloadHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.prune
import
ProgramDeps
from
paddle.distributed.fleet.meta_optimizers.sharding.prune
import
ProgramDeps
from
paddle.distributed.fleet.meta_optimizers.sharding.utils
import
*
from
paddle.distributed.fleet.meta_optimizers.sharding.utils
import
*
...
@@ -245,132 +246,137 @@ class ShardingOptimizer(MetaOptimizerBase):
...
@@ -245,132 +246,137 @@ class ShardingOptimizer(MetaOptimizerBase):
# 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
# 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
# })
# })
#def _create_var(block, ref_var, name):
pass
# """
#def _create_var(block, ref_var, name):
# Create a new var for block, which has the same type,
# """
# shape and dtype as ref_var, then rename it with the
# Create a new var for block, which has the same type,
# name `name`.
# shape and dtype as ref_var, then rename it with the
# """
# name `name`.
# new_var = block.create_var(
# """
# name=name,
# new_var = block.create_var(
# shape=ref_var.shape,
# name=name,
# dtype=ref_var.dtype,
# shape=ref_var.shape,
# type=ref_var.type,
# dtype=ref_var.dtype,
# lod_level=ref_var.lod_level,
# type=ref_var.type,
# persistable=ref_var.persistable,
# lod_level=ref_var.lod_level,
# is_data=ref_var.is_data,
# persistable=ref_var.persistable,
# need_check_feed=ref_var.desc.need_check_feed())
# is_data=ref_var.is_data,
# new_var.stop_gradient = ref_var.stop_gradient
# need_check_feed=ref_var.desc.need_check_feed())
# return new_var
# new_var.stop_gradient = ref_var.stop_gradient
# return new_var
#def _rename_arg(op, old_name, new_name):
# op_desc = op.desc
#def _rename_arg(op, old_name, new_name):
# if isinstance(op_desc, tuple):
# op_desc = op.desc
# op_desc = op_desc[0]
# if isinstance(op_desc, tuple):
# op_desc._rename_input(old_name, new_name)
# op_desc = op_desc[0]
# op_desc._rename_output(old_name, new_name)
# op_desc._rename_input(old_name, new_name)
# op_desc._rename_output(old_name, new_name)
#print("params_grads:", params_grads)
#for param_name, grad_name in params_grads:
#print("params_grads:", params_grads)
# if not self._shard.has_param(param_name): continue
#for param_name, grad_name in params_grads:
# #if not main_block.has_var(grad_name): continue
# if not self._shard.has_param(param_name): continue
# assert main_block.has_var(grad_name)
# #if not main_block.has_var(grad_name): continue
# use_fp16 = False
# assert main_block.has_var(grad_name)
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# use_fp16 = False
# if main_block.has_var(grad_name):
# fp16_grad_name = param_name + '.cast_fp16@GRAD'
# fp16_grad_var = main_block.vars[fp16_grad_name]
# if main_block.has_var(grad_name):
# use_fp16 = True
# fp16_grad_var = main_block.vars[fp16_grad_name]
# grad_var = main_block.vars[grad_name]
# use_fp16 = True
# if use_fp16:
# grad_var = main_block.vars[grad_name]
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# if use_fp16:
# grad_name)
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# cast_var = _create_var(main_block, fp16_grad_var,
# grad_name)
# cast_grad_var_name)
# cast_var = _create_var(main_block, fp16_grad_var,
# cast_var.persistable = False
# cast_grad_var_name)
# main_block.append_op(
# cast_var.persistable = False
# #index=offset + 1,
# main_block.append_op(
# type='cast',
# #index=offset + 1,
# inputs={'X': grad_var},
# type='cast',
# outputs={'Out': cast_var},
# inputs={'X': grad_var},
# attrs={
# outputs={'Out': cast_var},
# 'in_dtype': grad_var.dtype,
# attrs={
# 'out_dtype': cast_var.dtype,
# 'in_dtype': grad_var.dtype,
# 'op_role':
# 'out_dtype': cast_var.dtype,
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role':
# })
# core.op_proto_and_checker_maker.OpRole.Backward,
# #offset += 1
# })
# main_block.append_op(
# #offset += 1
# #index=offset + 1,
# main_block.append_op(
# type='sum',
# #index=offset + 1,
# inputs={'X': [fp16_grad_var, cast_var]},
# type='sum',
# outputs={'Out': fp16_grad_var},
# inputs={'X': [fp16_grad_var, cast_var]},
# attrs={
# outputs={'Out': fp16_grad_var},
# 'op_role':
# attrs={
# core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role':
# 'op_role_var': op_role_var
# core.op_proto_and_checker_maker.OpRole.Backward,
# })
# 'op_role_var': op_role_var
# })
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# offset = index
# for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
# if is_backward_op(op) and (
# offset = index
# 'op_role_var' in op.attr_names):
# if is_backward_op(op) and (
# op_role_var = op.all_attrs()['op_role_var']
# 'op_role_var' in op.attr_names):
# op_role_var = op.all_attrs()['op_role_var']
# if len(op_role_var) == 0:
# continue
# if len(op_role_var) == 0:
# assert len(op_role_var) % 2 == 0
# continue
# offset = index
# assert len(op_role_var) % 2 == 0
# for i in range(0, len(op_role_var), 2):
# offset = index
# grad_name = op_role_var[i + 1]
# for i in range(0, len(op_role_var), 2):
# if not main_block.has_var(grad_name): continue
# grad_name = op_role_var[i + 1]
# grad_var = main_block.vars[grad_name]
# if not main_block.has_var(grad_name): continue
# if not 'cast_fp16' in grad_name:
# grad_var = main_block.vars[grad_name]
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# if not 'cast_fp16' in grad_name:
# new_var = _create_var(main_block, grad_var,
# new_grad_var_name = paddle.fluid.unique_name.generate(grad_name)
# new_grad_var_name)
# new_var = _create_var(main_block, grad_var,
# new_var.persistable = False
# new_grad_var_name)
# _rename_arg(op, grad_name, new_grad_var_name)
# new_var.persistable = False
# main_block._insert_op(
# _rename_arg(op, grad_name, new_grad_var_name)
# index=offset + 1,
# main_block._insert_op(
# type='sum',
# index=offset + 1,
# inputs={'X': [grad_var, new_var]},
# type='sum',
# outputs={'Out': grad_var},
# inputs={'X': [grad_var, new_var]},
# attrs={
# outputs={'Out': grad_var},
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# attrs={
# 'op_role_var': op_role_var
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# })
# 'op_role_var': op_role_var
# offset += 1
# })
# if 'cast_fp16' in grad_name:
# offset += 1
# param_name = op_role_var[i]
# if 'cast_fp16' in grad_name:
# fp32_grad_var_name = param_name + "@GRAD"
# param_name = op_role_var[i]
# fp32_grad_var = main_block.vars[grad_name]
# fp32_grad_var_name = param_name + "@GRAD"
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# fp32_grad_var = main_block.vars[grad_name]
# fp32_grad_var_name)
# cast_grad_var_name = paddle.fluid.unique_name.generate(
# cast_var = _create_var(main_block, grad_var,
# fp32_grad_var_name)
# cast_grad_var_name)
# cast_var = _create_var(main_block, grad_var,
# cast_var.persistable = False
# cast_grad_var_name)
# main_block._insert_op(
# cast_var.persistable = False
# index=offset + 1,
# main_block._insert_op(
# type='cast',
# index=offset + 1,
# inputs={'X': fp32_grad_var},
# type='cast',
# outputs={'Out': cast_var},
# inputs={'X': fp32_grad_var},
# attrs={
# outputs={'Out': cast_var},
# 'in_dtype': fp32_grad_var.dtype,
# attrs={
# 'out_dtype': cast_var.dtype,
# 'in_dtype': fp32_grad_var.dtype,
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'out_dtype': cast_var.dtype,
# # self._op_role_var_key: op_role_var
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# })
# # self._op_role_var_key: op_role_var
# offset += 1
# })
# main_block._insert_op(
# offset += 1
# index=offset + 1,
# main_block._insert_op(
# type='sum',
# index=offset + 1,
# inputs={'X': [grad_var, cast_var]},
# type='sum',
# outputs={'Out': grad_var},
# inputs={'X': [grad_var, cast_var]},
# attrs={
# outputs={'Out': grad_var},
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# attrs={
# 'op_role_var': op_role_var})
# 'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
# 'op_role_var': op_role_var})
main_block
.
_sync_with_cpp
()
main_block
.
_sync_with_cpp
()
# TODO(wangxi): add optimize offload
offload_helper
=
OffloadHelper
()
offload_helper
.
offload
(
main_block
,
startup_block
)
with
open
(
"start_sharding_%d"
%
self
.
role_maker
.
_worker_index
(),
with
open
(
"start_sharding_%d"
%
self
.
role_maker
.
_worker_index
(),
'w'
)
as
f
:
'w'
)
as
f
:
f
.
writelines
(
str
(
startup_block
.
program
))
f
.
writelines
(
str
(
startup_block
.
program
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录