Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e6675f4f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e6675f4f
编写于
8月 23, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
normal: support mean and std tensor; randn = standard_normal (#26367)
上级
3a9417f4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
501 addition
and
141 deletion
+501
-141
python/paddle/__init__.py
python/paddle/__init__.py
+2
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-0
python/paddle/fluid/tests/unittests/test_normal.py
python/paddle/fluid/tests/unittests/test_normal.py
+197
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-1
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+299
-139
未找到文件。
python/paddle/__init__.py
浏览文件 @
e6675f4f
...
@@ -194,7 +194,8 @@ from .tensor.math import clip #DEFINE_ALIAS
...
@@ -194,7 +194,8 @@ from .tensor.math import clip #DEFINE_ALIAS
from
.tensor.math
import
trace
#DEFINE_ALIAS
from
.tensor.math
import
trace
#DEFINE_ALIAS
from
.tensor.math
import
kron
#DEFINE_ALIAS
from
.tensor.math
import
kron
#DEFINE_ALIAS
from
.tensor.math
import
prod
#DEFINE_ALIAS
from
.tensor.math
import
prod
#DEFINE_ALIAS
# from .tensor.random import gaussin #DEFINE_ALIAS
from
.tensor.random
import
standard_normal
from
.tensor.random
import
normal
from
.tensor.random
import
uniform
#DEFINE_ALIAS
from
.tensor.random
import
uniform
#DEFINE_ALIAS
from
.tensor.random
import
shuffle
#DEFINE_ALIAS
from
.tensor.random
import
shuffle
#DEFINE_ALIAS
from
.tensor.random
import
randn
#DEFINE_ALIAS
from
.tensor.random
import
randn
#DEFINE_ALIAS
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
e6675f4f
...
@@ -10466,6 +10466,7 @@ def uniform_random_batch_size_like(input,
...
@@ -10466,6 +10466,7 @@ def uniform_random_batch_size_like(input,
return out
return out
@deprecated(since="2.0.0", update_to="paddle.normal")
@templatedoc()
@templatedoc()
def gaussian_random(shape,
def gaussian_random(shape,
mean=0.0,
mean=0.0,
...
...
python/paddle/fluid/tests/unittests/test_normal.py
0 → 100644
浏览文件 @
e6675f4f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
copy
np
.
random
.
seed
(
10
)
class
TestNormalAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
mean
=
1.0
self
.
std
=
0.0
self
.
shape
=
None
self
.
repeat_num
=
1000
self
.
set_attrs
()
self
.
dtype
=
self
.
get_dtype
()
self
.
place
=
paddle
.
CUDAPlace
(
0
)
\
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
set_attrs
(
self
):
self
.
shape
=
[
8
,
12
]
def
get_shape
(
self
):
if
isinstance
(
self
.
mean
,
np
.
ndarray
):
shape
=
self
.
mean
.
shape
elif
isinstance
(
self
.
std
,
np
.
ndarray
):
shape
=
self
.
std
.
shape
else
:
shape
=
self
.
shape
return
list
(
shape
)
def
get_dtype
(
self
):
if
isinstance
(
self
.
mean
,
np
.
ndarray
):
return
self
.
mean
.
dtype
elif
isinstance
(
self
.
std
,
np
.
ndarray
):
return
self
.
std
.
dtype
else
:
return
'float32'
def
static_api
(
self
):
shape
=
self
.
get_shape
()
ret_all_shape
=
copy
.
deepcopy
(
shape
)
ret_all_shape
.
insert
(
0
,
self
.
repeat_num
)
ret_all
=
np
.
zeros
(
ret_all_shape
,
self
.
dtype
)
if
isinstance
(
self
.
mean
,
np
.
ndarray
)
\
and
isinstance
(
self
.
std
,
np
.
ndarray
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
mean
=
paddle
.
data
(
'Mean'
,
self
.
mean
.
shape
,
self
.
mean
.
dtype
)
std
=
paddle
.
data
(
'Std'
,
self
.
std
.
shape
,
self
.
std
.
dtype
)
out
=
paddle
.
normal
(
mean
,
std
,
self
.
shape
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
for
i
in
range
(
self
.
repeat_num
):
ret
=
exe
.
run
(
feed
=
{
'Mean'
:
self
.
mean
,
'Std'
:
self
.
std
.
reshape
(
shape
)
},
fetch_list
=
[
out
])
ret_all
[
i
]
=
ret
[
0
]
return
ret_all
elif
isinstance
(
self
.
mean
,
np
.
ndarray
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
mean
=
paddle
.
data
(
'Mean'
,
self
.
mean
.
shape
,
self
.
mean
.
dtype
)
out
=
paddle
.
normal
(
mean
,
self
.
std
,
self
.
shape
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
for
i
in
range
(
self
.
repeat_num
):
ret
=
exe
.
run
(
feed
=
{
'Mean'
:
self
.
mean
},
fetch_list
=
[
out
])
ret_all
[
i
]
=
ret
[
0
]
return
ret_all
elif
isinstance
(
self
.
std
,
np
.
ndarray
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
std
=
paddle
.
data
(
'Std'
,
self
.
std
.
shape
,
self
.
std
.
dtype
)
out
=
paddle
.
normal
(
self
.
mean
,
std
,
self
.
shape
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
for
i
in
range
(
self
.
repeat_num
):
ret
=
exe
.
run
(
feed
=
{
'Std'
:
self
.
std
},
fetch_list
=
[
out
])
ret_all
[
i
]
=
ret
[
0
]
return
ret_all
else
:
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
out
=
paddle
.
normal
(
self
.
mean
,
self
.
std
,
self
.
shape
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
for
i
in
range
(
self
.
repeat_num
):
ret
=
exe
.
run
(
fetch_list
=
[
out
])
ret_all
[
i
]
=
ret
[
0
]
return
ret_all
def
dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
shape
=
self
.
get_shape
()
ret_all_shape
=
copy
.
deepcopy
(
shape
)
ret_all_shape
.
insert
(
0
,
self
.
repeat_num
)
ret_all
=
np
.
zeros
(
ret_all_shape
,
self
.
dtype
)
mean
=
paddle
.
to_tensor
(
self
.
mean
)
\
if
isinstance
(
self
.
mean
,
np
.
ndarray
)
else
self
.
mean
std
=
paddle
.
to_tensor
(
self
.
std
)
\
if
isinstance
(
self
.
std
,
np
.
ndarray
)
else
self
.
std
for
i
in
range
(
self
.
repeat_num
):
out
=
paddle
.
normal
(
mean
,
std
,
self
.
shape
)
ret_all
[
i
]
=
out
.
numpy
()
paddle
.
enable_static
()
return
ret_all
def
test_api
(
self
):
ret_static
=
self
.
static_api
()
ret_dygraph
=
self
.
dygraph_api
()
for
ret
in
[
ret_static
,
ret_dygraph
]:
shape_ref
=
self
.
get_shape
()
self
.
assertEqual
(
shape_ref
,
list
(
ret
[
0
].
shape
))
ret
=
ret
.
flatten
().
reshape
([
self
.
repeat_num
,
-
1
])
mean
=
np
.
mean
(
ret
,
axis
=
0
)
std
=
np
.
std
(
ret
,
axis
=
0
)
mean_ref
=
self
.
mean
.
reshape
([
1
,
-
1
])
\
if
isinstance
(
self
.
mean
,
np
.
ndarray
)
else
self
.
mean
std_ref
=
self
.
std
.
reshape
([
1
,
-
1
])
\
if
isinstance
(
self
.
std
,
np
.
ndarray
)
else
self
.
std
self
.
assertTrue
(
np
.
allclose
(
mean_ref
,
mean
,
0.1
,
0.1
))
self
.
assertTrue
(
np
.
allclose
(
std_ref
,
std
,
0.1
,
0.1
))
class
TestNormalAPI_mean_is_tensor
(
TestNormalAPI
):
def
set_attrs
(
self
):
self
.
mean
=
np
.
random
.
uniform
(
-
2
,
-
1
,
[
2
,
3
,
4
,
5
]).
astype
(
'float64'
)
class
TestNormalAPI_std_is_tensor
(
TestNormalAPI
):
def
set_attrs
(
self
):
self
.
std
=
np
.
random
.
uniform
(
0.7
,
1
,
[
2
,
3
,
17
]).
astype
(
'float64'
)
class
TestNormalAPI_mean_std_are_tensor
(
TestNormalAPI
):
def
set_attrs
(
self
):
self
.
mean
=
np
.
random
.
uniform
(
1
,
2
,
[
1
,
100
]).
astype
(
'float64'
)
self
.
std
=
np
.
random
.
uniform
(
0.5
,
1
,
[
1
,
100
]).
astype
(
'float64'
)
class
TestNormalAPI_mean_std_are_tensor_with_different_dtype
(
TestNormalAPI
):
def
set_attrs
(
self
):
self
.
mean
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
'float64'
)
self
.
std
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
'float32'
)
class
TestNormalAlias
(
unittest
.
TestCase
):
def
test_alias
(
self
):
paddle
.
disable_static
()
shape
=
[
1
,
2
,
3
]
out1
=
paddle
.
normal
(
shape
=
shape
)
out2
=
paddle
.
tensor
.
normal
(
shape
=
shape
)
out3
=
paddle
.
tensor
.
random
.
normal
(
shape
=
shape
)
paddle
.
enable_static
()
class
TestNormalErrors
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
mean
=
[
1
,
2
,
3
]
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
mean
)
std
=
[
1
,
2
,
3
]
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
std
=
std
)
mean
=
paddle
.
data
(
'Mean'
,
[
100
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
mean
)
std
=
paddle
.
data
(
'Std'
,
[
100
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
mean
=
1.0
,
std
=
std
)
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
shape
=
1
)
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
shape
=
[
1.0
])
shape
=
paddle
.
data
(
'Shape'
,
[
100
],
'float32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
normal
,
shape
=
shape
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
e6675f4f
...
@@ -162,7 +162,8 @@ from .math import clip #DEFINE_ALIAS
...
@@ -162,7 +162,8 @@ from .math import clip #DEFINE_ALIAS
from
.math
import
trace
#DEFINE_ALIAS
from
.math
import
trace
#DEFINE_ALIAS
from
.math
import
kron
#DEFINE_ALIAS
from
.math
import
kron
#DEFINE_ALIAS
from
.math
import
prod
#DEFINE_ALIAS
from
.math
import
prod
#DEFINE_ALIAS
# from .random import gaussin #DEFINE_ALIAS
from
.random
import
standard_normal
from
.random
import
normal
from
.random
import
uniform
#DEFINE_ALIAS
from
.random
import
uniform
#DEFINE_ALIAS
from
.random
import
shuffle
#DEFINE_ALIAS
from
.random
import
shuffle
#DEFINE_ALIAS
from
.random
import
randn
#DEFINE_ALIAS
from
.random
import
randn
#DEFINE_ALIAS
...
...
python/paddle/tensor/random.py
浏览文件 @
e6675f4f
...
@@ -21,20 +21,23 @@ from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, V
...
@@ -21,20 +21,23 @@ from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, V
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
convert_dtype
,
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.data_feeder
import
convert_dtype
,
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.layers
import
utils
,
gaussian_random
from
..fluid.layers
import
utils
from
..fluid.layers.tensor
import
fill_constant
from
..fluid.layers.tensor
import
fill_constant
import
paddle
import
warnings
from
..fluid.io
import
shuffle
#DEFINE_ALIAS
from
..fluid.io
import
shuffle
#DEFINE_ALIAS
__all__
=
[
__all__
=
[
'bernoulli'
,
'bernoulli'
,
# 'gaussin',
'standard_normal'
,
'normal'
,
'uniform'
,
'uniform'
,
'shuffle'
,
'shuffle'
,
'randn'
,
'randn'
,
'rand'
,
'rand'
,
'randint'
,
'randint'
,
'randperm'
'randperm'
,
]
]
...
@@ -91,6 +94,237 @@ def bernoulli(x, name=None):
...
@@ -91,6 +94,237 @@ def bernoulli(x, name=None):
return
out
return
out
def
gaussian_random
(
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
'float32'
,
name
=
None
):
"""
This OP returns a Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
mean(float|int, optional): Mean of the output tensor, default is 0.0.
std(float|int, optional): Standard deviation of the output tensor, default
is 1.0.
seed(int, optional): ${seed_comment}
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
the output Tensor. Supported data types: float32, float64.
Default is float32.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
"""
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
seed
=
0
op_type_for_check
=
'gaussian_random/standard_normal/randn/normal'
if
in_dygraph_mode
():
shape
=
utils
.
_convert_shape_to_list
(
shape
)
return
core
.
ops
.
gaussian_random
(
'shape'
,
shape
,
'mean'
,
float
(
mean
),
'std'
,
float
(
std
),
'seed'
,
seed
,
'dtype'
,
dtype
)
check_type
(
shape
,
'shape'
,
(
list
,
tuple
,
Variable
),
op_type_for_check
)
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
],
op_type_for_check
)
inputs
=
{}
attrs
=
{
'mean'
:
mean
,
'std'
:
std
,
'seed'
:
seed
,
'dtype'
:
dtype
,
'use_mkldnn'
:
False
}
utils
.
_get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
op_type_for_check
)
helper
=
LayerHelper
(
'gaussian_random'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'gaussian_random'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
out
.
stop_gradient
=
True
return
out
def
standard_normal
(
shape
,
dtype
=
None
,
name
=
None
):
"""
This OP returns a Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with ``shape``
and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: float32, float64. If ``dytpe``
is None, the data type is float32. Default is None.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with
``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_1 = paddle.standard_normal(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.standard_normal(shape=[dim_1, dim_2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
# [-0.7989969 , 0.00754541]], # random
# [[ 0.85201347, 0.32320443], # random
# [ 1.1399018 , 0.48336947], # random
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_tensor(np.array([2, 3]))
result_3 = paddle.standard_normal(var_shape)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
"""
if
dtype
is
None
:
dtype
=
'float32'
return
gaussian_random
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
dtype
=
dtype
,
name
=
name
)
randn
=
standard_normal
def
normal
(
mean
=
0.0
,
std
=
1.0
,
shape
=
None
,
name
=
None
):
"""
This OP returns a Tensor filled with random values sampled from a normal
distribution with ``mean`` and ``std`` (standard deviation) .
If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.
If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.
Args:
mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
If ``mean`` is float, all elements of the output Tensor shared the same mean.
If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
Default is 0.0
std (float|Tensor, optional): The standard deviation of the output Tensor's normal distribution.
If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
Defaule is 1.0
shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
Default is None
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
out1 = paddle.normal(shape=[2, 3])
# [[ 0.17501129 0.32364586 1.561118 ] # random
# [-1.7232178 1.1545963 -0.76156676]] # random
mean_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
out2 = paddle.normal(mean=mean_tensor)
# [ 0.18644847 -1.19434458 3.93694787] # random
std_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
# [1.00780561 3.78457445 5.81058198] # random
"""
if
not
in_dygraph_mode
():
check_type
(
mean
,
'mean'
,
(
int
,
float
,
Variable
),
'normal'
)
check_type
(
std
,
'std'
,
(
int
,
float
,
Variable
),
'normal'
)
if
isinstance
(
mean
,
Variable
):
check_dtype
(
mean
.
dtype
,
'mean'
,
[
'float32'
,
'float64'
],
'normal'
,
"If mean is Tensor, it's data type only support float32, float64."
)
if
isinstance
(
std
,
Variable
):
check_dtype
(
std
.
dtype
,
'std'
,
[
'float32'
,
'float64'
],
'normal'
,
"If std is Tensor, it's data type only support float32, float64."
)
if
shape
is
not
None
:
if
isinstance
(
shape
,
(
list
,
tuple
)):
for
item
in
shape
:
check_type
(
item
,
'shape'
,
(
int
),
'normal'
,
'Elements of shape should be int.'
)
elif
isinstance
(
shape
,
Variable
):
check_dtype
(
shape
.
dtype
,
'shape'
,
[
'int32'
,
'int64'
],
'normal'
)
else
:
assert
TypeError
(
'If mean and std are all not Tensor, shape should be list, tuple, Tensor.'
)
if
isinstance
(
mean
,
Variable
):
if
isinstance
(
std
,
Variable
):
if
std
.
dtype
!=
mean
.
dtype
:
std
=
paddle
.
cast
(
std
,
mean
.
dtype
)
mean_shape
=
paddle
.
shape
(
mean
)
std
=
paddle
.
reshape
(
std
,
mean_shape
)
else
:
std
=
float
(
std
)
out
=
standard_normal
(
paddle
.
shape
(
mean
),
mean
.
dtype
,
name
)
elif
isinstance
(
std
,
Variable
):
mean
=
float
(
mean
)
out
=
standard_normal
(
paddle
.
shape
(
std
),
std
.
dtype
,
name
)
else
:
return
gaussian_random
(
shape
=
shape
,
mean
=
mean
,
std
=
std
,
name
=
name
)
out
=
out
*
std
+
mean
if
not
in_dygraph_mode
():
out
.
stop_grediant
=
True
return
out
def
uniform
(
shape
,
dtype
=
'float32'
,
min
=-
1.0
,
max
=
1.0
,
seed
=
0
,
name
=
None
):
def
uniform
(
shape
,
dtype
=
'float32'
,
min
=-
1.0
,
max
=
1.0
,
seed
=
0
,
name
=
None
):
"""
"""
This OP returns a Tensor filled with random values sampled from a uniform
This OP returns a Tensor filled with random values sampled from a uniform
...
@@ -98,10 +332,8 @@ def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
...
@@ -98,10 +332,8 @@ def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
Examples:
Examples:
::
::
Input:
Input:
shape = [1, 2]
shape = [1, 2]
Output:
Output:
result=[[0.8505902, 0.8397286]]
result=[[0.8505902, 0.8397286]]
...
@@ -161,7 +393,6 @@ def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
...
@@ -161,7 +393,6 @@ def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
# attr shape is a Tensor, the data type must be int64 or int32.
# attr shape is a Tensor, the data type must be int64 or int32.
shape = np.array([2, 3])
shape = np.array([2, 3])
shape_tensor = paddle.to_tensor(shape)
shape_tensor = paddle.to_tensor(shape)
result_3 = paddle.tensor.random.uniform(shape_tensor)
result_3 = paddle.tensor.random.uniform(shape_tensor)
# if shape_tensor's value is [2, 3]
# if shape_tensor's value is [2, 3]
# result_3 is:
# result_3 is:
...
@@ -237,40 +468,40 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
...
@@ -237,40 +468,40 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
paddle.disable_static()
# example 1:
# example 1:
# attr shape is a list which doesn't contain Tensor.
# attr shape is a list which doesn't contain Tensor.
result_1 = paddle.randint(low=-5, high=5, shape=[3])
result_1 = paddle.randint(low=-5, high=5, shape=[3])
# [0, -3, 2]
# [0, -3, 2] # random
# example 2:
# example 2:
# attr shape is a list which contains Tensor.
# attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
# [[0, -1, -3],
# [[0, -1, -3], # random
# [4, -2, 0]]
# [4, -2, 0]] # random
# example 3:
# example 3:
# attr shape is a Tensor
# attr shape is a Tensor
var_shape = paddle.to_variable(np.array([3]))
var_shape = paddle.to_variable(np.array([3]))
result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
# [-2, 2, 3]
# [-2, 2, 3] # random
# example 4:
# example 4:
# data type is int32
# data type is int32
result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
# [-5, 4, -4]
# [-5, 4, -4] # random
# example 5:
# example 5:
# Input only one parameter
# Input only one parameter
# low=0, high=10, shape=[1], dtype='int64'
# low=0, high=10, shape=[1], dtype='int64'
result_5 = paddle.randint(10)
result_5 = paddle.randint(10)
# [7]
# [7] # random
"""
"""
if
high
is
None
:
if
high
is
None
:
...
@@ -309,77 +540,6 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
...
@@ -309,77 +540,6 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
return
out
return
out
def
randn
(
shape
,
dtype
=
None
,
name
=
None
):
"""
:alias_main: paddle.randn
:alias: paddle.tensor.randn, paddle.tensor.random.randn
This OP returns a Tensor filled with random values sampled from a normal
distribution with mean 0 and standard deviation 1 (also called the standard
normal distribution), with ``shape`` and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: float32, float64. If ``dytpe``
is None, the data type is float32. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a normal
distribution with mean 0 and standard deviation 1 (also called the
standard normal distribution), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_1 = paddle.randn(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987],
# [ 0.39632758, 0.08177969, 0.2692008 ]]
# example 2: attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
# [[[-2.8852394 , -0.25898588],
# [-0.47420555, 0.17683524],
# [-0.7989969 , 0.00754541]],
# [[ 0.85201347, 0.32320443],
# [ 1.1399018 , 0.48336947],
# [ 0.8086993 , 0.6868893 ]]]
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_variable(np.array([2, 3]))
result_3 = paddle.randn(var_shape)
# [[-2.878077 , 0.17099959, 0.05111201]
# [-0.3761474, -1.044801 , 1.1870178 ]]
"""
if
dtype
is
None
:
dtype
=
'float32'
out
=
gaussian_random
(
shape
=
shape
,
mean
=
0.0
,
std
=
1.0
,
seed
=
0
,
dtype
=
dtype
,
name
=
name
)
out
.
stop_gradient
=
True
return
out
@
templatedoc
()
@
templatedoc
()
def
randperm
(
n
,
dtype
=
"int64"
,
name
=
None
):
def
randperm
(
n
,
dtype
=
"int64"
,
name
=
None
):
"""
"""
...
@@ -409,15 +569,15 @@ def randperm(n, dtype="int64", name=None):
...
@@ -409,15 +569,15 @@ def randperm(n, dtype="int64", name=None):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle
paddle.disable_static()
paddle.disable_static()
result_1 = paddle.randperm(5)
result_1 = paddle.randperm(5)
# [4, 1, 2, 3, 0]
# [4, 1, 2, 3, 0] # random
result_2 = paddle.randperm(7, 'int32')
result_2 = paddle.randperm(7, 'int32')
# [1, 6, 2, 0, 4, 3, 5]
# [1, 6, 2, 0, 4, 3, 5] # random
"""
"""
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
...
@@ -481,31 +641,31 @@ def rand(shape, dtype=None, name=None):
...
@@ -481,31 +641,31 @@ def rand(shape, dtype=None, name=None):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
import paddle
import numpy as np
import numpy as np
paddle.disable_static()
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
# example 1: attr shape is a list which doesn't contain Tensor.
result_1 = paddle.rand(shape=[2, 3])
result_1 = paddle.rand(shape=[2, 3])
# [[0.451152 , 0.55825245, 0.403311 ],
# [[0.451152 , 0.55825245, 0.403311 ], # random
# [0.22550228, 0.22106001, 0.7877319 ]]
# [0.22550228, 0.22106001, 0.7877319 ]] # random
# example 2: attr shape is a list which contains Tensor.
# example 2: attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
# [[[0.8879919 , 0.25788337],
# [[[0.8879919 , 0.25788337], # random
# [0.28826773, 0.9712097 ],
# [0.28826773, 0.9712097 ], # random
# [0.26438272, 0.01796806]],
# [0.26438272, 0.01796806]], # random
# [[0.33633623, 0.28654453],
# [[0.33633623, 0.28654453], # random
# [0.79109055, 0.7305809 ],
# [0.79109055, 0.7305809 ], # random
# [0.870881 , 0.2984597 ]]]
# [0.870881 , 0.2984597 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_variable(np.array([2, 3]))
var_shape = paddle.to_variable(np.array([2, 3]))
result_3 = paddle.rand(var_shape)
result_3 = paddle.rand(var_shape)
# [[0.22920267, 0.841956 , 0.05981819],
# [[0.22920267, 0.841956 , 0.05981819], # random
# [0.4836288 , 0.24573246, 0.7516129 ]]
# [0.4836288 , 0.24573246, 0.7516129 ]] # random
"""
"""
if
dtype
is
None
:
if
dtype
is
None
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录