Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e21dcc5b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e21dcc5b
编写于
10月 03, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gan api
上级
71dff503
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
22 addition
and
9 deletion
+22
-9
doc/design/gan_api.md
doc/design/gan_api.md
+22
-9
未找到文件。
doc/design/gan_api.md
浏览文件 @
e21dcc5b
'''
'''
GAN implementation, just a demo.
GAN implementation, just a demo.
'''
'''
```
python
# pd for short, should be more concise.
# pd for short, should be more concise.
from
paddle
.
v2
as
pd
from
paddle
.
v2
as
pd
import
numpy
as
np
import
numpy
as
np
import
logging
import
logging
X
=
pd
.
data
(
pd
.
float_vector
(
784
))
X
=
pd
.
data
(
pd
.
float_vector
(
784
))
```
# Conditional-GAN should be a class.
# Conditional-GAN should be a class.
### Class member function: the initializer.
### Class member function: the initializer.
```
python
class
DCGAN
(
object
):
class
DCGAN
(
object
):
def
__init__
(
self
,
y_dim
=
None
):
def
__init__
(
self
,
y_dim
=
None
):
...
@@ -19,22 +21,26 @@ class DCGAN(object):
...
@@ -19,22 +21,26 @@ class DCGAN(object):
self
.
z_dim
=
z_dim
# input noise dimension
self
.
z_dim
=
z_dim
# input noise dimension
# define parameters of discriminators
# define parameters of discriminators
self
.
D_W0
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
D_b0
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
D_W1
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
D_W1
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
D_b1
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
D_b1
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
D_W2
=
pd
.
Varialble
(
np
.
random
.
rand
(
128
,
1
))
self
.
D_W2
=
pd
.
Varialble
(
np
.
random
.
rand
(
128
,
1
))
self
.
D_b2
=
pd
.
Variable
(
np
.
zeros
(
128
))
self
.
D_b2
=
pd
.
Variable
(
np
.
zeros
(
128
))
self.theta_D = [
D_W1, D_b1, D_W2,
D_b2]
self
.
theta_D
=
[
self
.
D_W0
,
self
.
D_b0
,
self
.
D_W1
,
self
.
D_b1
,
self
.
D_W2
,
self
.
D_b2
]
# define parameters of generators
# define parameters of generators
self
.
G_W0
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
G_b0
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
G_W1
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
G_W1
=
pd
.
Variable
(
shape
=
[
784
,
128
],
data
=
pd
.
gaussian_normal_randomizer
())
self
.
G_b1
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
G_b1
=
pd
.
Variable
(
np
.
zeros
(
128
))
# variable also support initialization using a numpy data
self
.
G_W2
=
pd
.
Varialble
(
np
.
random
.
rand
(
128
,
1
))
self
.
G_W2
=
pd
.
Varialble
(
np
.
random
.
rand
(
128
,
1
))
self
.
G_b2
=
pd
.
Variable
(
np
.
zeros
(
128
))
self
.
G_b2
=
pd
.
Variable
(
np
.
zeros
(
128
))
self.theta_G = [D_W1, D_b1, D_W2, D_b2]
self
.
theta_G
=
[
self
.
G_W0
,
self
.
G_b0
,
self
.
G_W1
,
self
.
G_b1
,
self
.
G_W2
,
self
.
G_b2
]
```
self.build_model()
### Class member function: Generator Net
### Class member function: Generator Net
```
python
def
generator
(
self
,
z
,
y
=
None
):
def
generator
(
self
,
z
,
y
=
None
):
# Generator Net
# Generator Net
...
@@ -52,8 +58,10 @@ def generator(self, z, y = None):
...
@@ -52,8 +58,10 @@ def generator(self, z, y = None):
G_h2
=
pd
.
deconv
(
G_h1_relu
,
self
.
G_W2
,
self
.
G_b2
))
G_h2
=
pd
.
deconv
(
G_h1_relu
,
self
.
G_W2
,
self
.
G_b2
))
G_im
=
pd
.
tanh
(
G_im
)
G_im
=
pd
.
tanh
(
G_im
)
return
G_im
return
G_im
```
### Class member function: Discriminator Net
### Class member function: Discriminator Net
```
python
def
discriminator
(
self
,
image
):
def
discriminator
(
self
,
image
):
# Discriminator Net
# Discriminator Net
...
@@ -67,8 +75,10 @@ def discriminator(self, image):
...
@@ -67,8 +75,10 @@ def discriminator(self, image):
D_h2
=
pd
.
fc
(
D_h1_relu
,
self
.
D_w2
,
self
.
D_b2
)
D_h2
=
pd
.
fc
(
D_h1_relu
,
self
.
D_w2
,
self
.
D_b2
)
return
D_h2
return
D_h2
```
### Class member function: Build the model
### Class member function: Build the model
```
python
def
build_model
(
self
):
def
build_model
(
self
):
# input data
# input data
...
@@ -97,8 +107,10 @@ def build_model(self):
...
@@ -97,8 +107,10 @@ def build_model(self):
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
self
.
g_loss
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_f
,
np
.
ones
(
self
.
batch_szie
))
self
.
g_loss
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_f
,
np
.
ones
(
self
.
batch_szie
))
```
# Main function for the demo:
# Main function for the demo:
```
python
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
# dcgan
# dcgan
...
@@ -109,7 +121,7 @@ if __name__ == "__main__":
...
@@ -109,7 +121,7 @@ if __name__ == "__main__":
data_X
,
data_y
=
self
.
load_mnist
()
data_X
,
data_y
=
self
.
load_mnist
()
# Two subgraphs required!!!
# Two subgraphs required!!!
d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss)
d_optim
=
pd
.
train
.
Adam
(
lr
=
.
001
,
beta
=
.
1
).
minimize
(
self
.
d_loss
,
)
g_optim
=
pd
.
train
.
Adam
(
lr
=
.
001
,
beta
=
.
1
).
minimize
(
self
.
g_loss
)
g_optim
=
pd
.
train
.
Adam
(
lr
=
.
001
,
beta
=
.
1
).
minimize
(
self
.
g_loss
)
# executor
# executor
...
@@ -125,10 +137,11 @@ if __name__ == "__main__":
...
@@ -125,10 +137,11 @@ if __name__ == "__main__":
batch_z
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
batch_size
,
z_dim
])
batch_z
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
batch_size
,
z_dim
])
if
batch_id
%
2
==
0
:
if
batch_id
%
2
==
0
:
sess.
run
(d_optim,
sess
.
eval
(
d_optim
,
feed_dict
=
{
dcgan
.
images
:
batch_im
,
feed_dict
=
{
dcgan
.
images
:
batch_im
,
dcgan
.
y
:
batch_label
,
dcgan
.
y
:
batch_label
,
dcgan
.
z
:
batch_z
})
dcgan
.
z
:
batch_z
})
else
:
else
:
sess.
run
(g_optim,
sess
.
eval
(
g_optim
,
feed_dict
=
{
dcgan
.
z
:
batch_z
})
feed_dict
=
{
dcgan
.
z
:
batch_z
})
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录