Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
71dff503
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
71dff503
编写于
10月 03, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
API of GAN
上级
8bf209f9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
134 addition
and
0 deletion
+134
-0
doc/design/gan_api.md
doc/design/gan_api.md
+134
-0
未找到文件。
doc/design/gan_api.md
0 → 100644
浏览文件 @
71dff503
'''
GAN implementation, just a demo.
'''
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging
X = pd.data(pd.float_vector(784))
# Conditional-GAN should be a class.
### Class member function: the initializer.
class DCGAN(object):
def __init__(self, y_dim=None):
# hyper parameters
self.y_dim = y_dim # conditional gan or not
self.batch_size = 100
self.z_dim = z_dim # input noise dimension
# define parameters of discriminators
self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.D_W2 = pd.Varialble(np.random.rand(128, 1))
self.D_b2 = pd.Variable(np.zeros(128))
self.theta_D = [D_W1, D_b1, D_W2, D_b2]
# define parameters of generators
self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.G_W2 = pd.Varialble(np.random.rand(128, 1))
self.G_b2 = pd.Variable(np.zeros(128))
self.theta_G = [D_W1, D_b1, D_W2, D_b2]
self.build_model()
### Class member function: Generator Net
def generator(self, z, y = None):
# Generator Net
if not self.y_dim:
z = pd.concat(1, [z, y])
G_h0 = pd.fc(z, self.G_w0, self.G_b0)
G_h0_bn = pd.batch_norm(G_h0)
G_h0_relu = pd.relu(G_h0_bn)
G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1)
G_h1_bn = pd.batch_norm(G_h1)
G_h1_relu = pd.relu(G_h1_bn)
G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
G_im = pd.tanh(G_im)
return G_im
### Class member function: Discriminator Net
def discriminator(self, image):
# Discriminator Net
D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
D_h0_bn = pd.batchnorm(h0)
D_h0_relu = pd.lrelu(h0_bn)
D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
D_h1_bn = pd.batchnorm(D_h1)
D_h1_relu = pd.lrelu(D_h1_bn)
D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
return D_h2
### Class member function: Build the model
def build_model(self):
# input data
if self.y_dim:
self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.z = pd.data(tf.float32, [None, self.z_size])
# if conditional GAN
if self.y_dim:
self.G = self.generator(self.z, self.y)
self.D_t = self.discriminator(self.images)
# generated fake images
self.sampled = self.sampler(self.z, self.y)
self.D_f = self.discriminator(self.images)
else: # original version of GAN
self.G = self.generator(self.z)
self.D_t = self.discriminator(self.images)
# generate fake images
self.sampled = self.sampler(self.z)
self.D_f = self.discriminator(self.images)
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
self.d_loss = self.d_loss_real + self.d_loss_fake
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
# Main function for the demo:
if __name__ == "__main__":
# dcgan
dcgan = DCGAN()
dcgan.build_model()
# load mnist data
data_X, data_y = self.load_mnist()
# Two subgraphs required!!!
d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss)
g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)
# executor
sess = pd.executor()
# training
for epoch in xrange(10000):
for batch_id in range(N / batch_size):
idx = ...
# sample a batch
batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
# sample z
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
if batch_id % 2 == 0:
sess.run(d_optim,
feed_dict = {dcgan.images: batch_im,
dcgan.y: batch_label,
dcgan.z: batch_z})
else:
sess.run(g_optim,
feed_dict = {dcgan.z: batch_z})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录