Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dd90f102
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dd90f102
编写于
5月 09, 2023
作者:
S
Sanbu
提交者:
GitHub
5月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support static graph code-gen for unpool3d (#53479)
上级
ea0abf93
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
27 addition
and
237 deletion
+27
-237
paddle/fluid/operators/unpool_op.cc
paddle/fluid/operators/unpool_op.cc
+0
-179
paddle/phi/api/yaml/backward.yaml
paddle/phi/api/yaml/backward.yaml
+11
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+0
-11
paddle/phi/api/yaml/legacy_ops.yaml
paddle/phi/api/yaml/legacy_ops.yaml
+0
-10
paddle/phi/api/yaml/op_compat.yaml
paddle/phi/api/yaml/op_compat.yaml
+6
-0
paddle/phi/api/yaml/ops.yaml
paddle/phi/api/yaml/ops.yaml
+10
-0
paddle/phi/ops/compat/unpool3d_sig.cc
paddle/phi/ops/compat/unpool3d_sig.cc
+0
-37
未找到文件。
paddle/fluid/operators/unpool_op.cc
已删除
100644 → 0
浏览文件 @
ea0abf93
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
namespace
paddle
{
namespace
operators
{
class
Unpool3dOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input tensor of unpool operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"feature."
);
AddInput
(
"Indices"
,
"(Tensor) The input tensor of the indices given out by MaxPool3d. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"feature."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of unpool operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of feature."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector), the unpooling window size(depth, height, width) "
"of unpooling operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1, 1}), "
"strides (depth, height, width) of unpooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector default:{0, 0,0}), "
"paddings (depth, height, width) of unpooling operator."
)
.
SetDefault
({
0
,
0
,
0
});
AddAttr
<
std
::
string
>
(
"unpooling_type"
,
"(string), unpooling type, can be
\"
max
\"
for max-unpooling "
)
.
InEnum
({
"max"
});
AddAttr
<
std
::
vector
<
int
>>
(
"output_size"
,
"(vector, optional). The shape of output."
)
.
SetDefault
({
0
,
0
,
0
});
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCDHW)"
"Defaults to
\"
NCDHW
\"
. Specify the data format of the output data, "
)
.
SetDefault
(
"NCDHW"
);
AddComment
(
R"DOC(
Input shape is: $(N, C_{in}, D_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, D_{out}, H_{out}, W_{out})$, where
$$
D_{out} = (D_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
H_{out} = (H_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1] \\
W_{out} = (W_{in}-1) * strides[2] - 2 * paddings[2] + ksize[2]
$$
)DOC"
);
}
};
int
UnpoolOutputSize
(
int
input_size
,
int
ksize
,
int
padding
,
int
stride
)
{
int
output_size
=
(
input_size
-
1
)
*
stride
-
2
*
padding
+
ksize
;
return
output_size
;
}
class
UnpoolOp
:
public
framework
::
OperatorWithKernel
{
protected:
phi
::
KernelKey
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
phi
::
KernelKey
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
};
class
Unpool3dOp
:
public
framework
::
OperatorWithKernel
{
protected:
phi
::
KernelKey
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
phi
::
KernelKey
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
};
template
<
typename
T
>
class
UnpoolOpGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Indices"
,
this
->
Input
(
"Indices"
));
op
->
SetInput
(
"Out"
,
this
->
Output
(
"Out"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
template
<
typename
T
>
class
Unpool3dOpGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Indices"
,
this
->
Input
(
"Indices"
));
op
->
SetInput
(
"Out"
,
this
->
Output
(
"Out"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
class
Unpool3dOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
phi
::
KernelKey
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
phi
::
KernelKey
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
unpool
,
Unpool3dInferShapeFunctor
,
PD_INFER_META
(
phi
::
Unpool3dInferMeta
));
REGISTER_OPERATOR
(
unpool3d
,
ops
::
Unpool3dOp
,
ops
::
Unpool3dOpMaker
,
ops
::
Unpool3dOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
Unpool3dOpGradMaker
<
paddle
::
imperative
::
OpBase
>
,
Unpool3dInferShapeFunctor
);
DECLARE_INFER_SHAPE_FUNCTOR
(
unpool3d_grad
,
Unpool3dGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
UnchangedInferMeta
));
REGISTER_OPERATOR
(
unpool3d_grad
,
ops
::
Unpool3dOpGrad
,
Unpool3dGradInferShapeFunctor
);
paddle/phi/api/yaml/backward.yaml
浏览文件 @
dd90f102
...
...
@@ -2065,6 +2065,17 @@
func
:
where_grad
no_need_buffer
:
x, y
-
backward_op
:
unpool3d_grad
forward
:
unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW") -> Tensor(out)
args
:
(Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, int[] output_size, str data_format)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
unpool3d_grad
data_type
:
x
-
backward_op
:
unpool_grad
forward
:
unpool (Tensor x, Tensor indices, int[] ksize, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW") -> Tensor(out)
args
:
(Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, IntArray output_size, str data_format)
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
dd90f102
...
...
@@ -1042,14 +1042,3 @@
kernel
:
func
:
yolo_loss_grad
optional
:
gt_score
-
backward_op
:
unpool3d_grad
forward
:
unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out)
args
:
(Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
unpool3d_grad
data_type
:
x
paddle/phi/api/yaml/legacy_ops.yaml
浏览文件 @
dd90f102
...
...
@@ -1207,16 +1207,6 @@
func
:
unique
data_type
:
x
-
op
:
unpool3d
args
:
(Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
output
:
Tensor(out)
infer_meta
:
func
:
Unpool3dInferMeta
kernel
:
func
:
unpool3d
data_type
:
x
backward
:
unpool3d_grad
-
op
:
yolo_loss
args
:
(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
output
:
Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
...
...
paddle/phi/api/yaml/op_compat.yaml
浏览文件 @
dd90f102
...
...
@@ -2431,6 +2431,12 @@
data_type
:
int
support_tensor
:
true
-
op
:
unpool3d
inputs
:
{
x
:
X
,
indices
:
Indices
}
outputs
:
out
:
Out
-
op
:
unsqueeze (unsqueeze2)
backward
:
unsqueeze_grad (unsqueeze2_grad), unsqueeze_double_grad(unsqueeze2_double_grad)
inputs
:
...
...
paddle/phi/api/yaml/ops.yaml
浏览文件 @
dd90f102
...
...
@@ -2153,6 +2153,16 @@
data_type
:
x
backward
:
unpool_grad
-
op
:
unpool3d
args
:
(Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW")
output
:
Tensor(out)
infer_meta
:
func
:
Unpool3dInferMeta
kernel
:
func
:
unpool3d
data_type
:
x
backward
:
unpool3d_grad
-
op
:
unsqueeze
args
:
(Tensor x, IntArray axis = {})
output
:
Tensor(out), Tensor(xshape)
...
...
paddle/phi/ops/compat/unpool3d_sig.cc
已删除
100644 → 0
浏览文件 @
ea0abf93
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
Unpool3dOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"unpool3d"
,
{
"X"
,
"Indices"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"output_size"
,
"data_format"
},
{
"Out"
});
}
KernelSignature
Unpool3dGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"unpool3d_grad"
,
{
"X"
,
"Indices"
,
"Out"
,
"Out@GRAD"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"output_size"
,
"data_format"
},
{
"X@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
unpool3d
,
phi
::
Unpool3dOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
unpool3d_grad
,
phi
::
Unpool3dGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录