未验证 提交 dd90f102 编写于 作者: S Sanbu 提交者: GitHub

Support static graph code-gen for unpool3d (#53479)

上级 ea0abf93
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class Unpool3dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor of unpool operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"feature.");
AddInput(
"Indices",
"(Tensor) The input tensor of the indices given out by MaxPool3d. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"feature.");
AddOutput("Out",
"(Tensor) The output tensor of unpool operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of feature.");
AddAttr<std::vector<int>>(
"ksize",
"(vector), the unpooling window size(depth, height, width) "
"of unpooling operator.");
AddAttr<std::vector<int>>(
"strides",
"(vector, default:{1, 1, 1}), "
"strides (depth, height, width) of unpooling operator.")
.SetDefault({1, 1, 1});
AddAttr<std::vector<int>>(
"paddings",
"(vector default:{0, 0,0}), "
"paddings (depth, height, width) of unpooling operator.")
.SetDefault({0, 0, 0});
AddAttr<std::string>(
"unpooling_type",
"(string), unpooling type, can be \"max\" for max-unpooling ")
.InEnum({"max"});
AddAttr<std::vector<int>>("output_size",
"(vector, optional). The shape of output.")
.SetDefault({0, 0, 0});
AddAttr<std::string>(
"data_format",
"(string, default NCDHW)"
"Defaults to \"NCDHW\". Specify the data format of the output data, ")
.SetDefault("NCDHW");
AddComment(R"DOC(
Input shape is: $(N, C_{in}, D_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, D_{out}, H_{out}, W_{out})$, where
$$
D_{out} = (D_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
H_{out} = (H_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1] \\
W_{out} = (W_{in}-1) * strides[2] - 2 * paddings[2] + ksize[2]
$$
)DOC");
}
};
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
int output_size = (input_size - 1) * stride - 2 * padding + ksize;
return output_size;
}
class UnpoolOp : public framework::OperatorWithKernel {
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
class Unpool3dOp : public framework::OperatorWithKernel {
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
template <typename T>
class UnpoolOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Indices", this->Input("Indices"));
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class Unpool3dOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Indices", this->Input("Indices"));
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
class Unpool3dOpGrad : public framework::OperatorWithKernel {
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(unpool,
Unpool3dInferShapeFunctor,
PD_INFER_META(phi::Unpool3dInferMeta));
REGISTER_OPERATOR(unpool3d,
ops::Unpool3dOp,
ops::Unpool3dOpMaker,
ops::Unpool3dOpGradMaker<paddle::framework::OpDesc>,
ops::Unpool3dOpGradMaker<paddle::imperative::OpBase>,
Unpool3dInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(unpool3d_grad,
Unpool3dGradInferShapeFunctor,
PD_INFER_META(phi::UnchangedInferMeta));
REGISTER_OPERATOR(unpool3d_grad,
ops::Unpool3dOpGrad,
Unpool3dGradInferShapeFunctor);
......@@ -2065,6 +2065,17 @@
func : where_grad
no_need_buffer : x, y
- backward_op: unpool3d_grad
forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW") -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, int[] output_size, str data_format)
output: Tensor(x_grad)
infer_meta:
func: UnchangedInferMeta
param : [x]
kernel:
func: unpool3d_grad
data_type: x
- backward_op: unpool_grad
forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW") -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, IntArray output_size, str data_format)
......
......@@ -1042,14 +1042,3 @@
kernel :
func : yolo_loss_grad
optional : gt_score
- backward_op: unpool3d_grad
forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
output: Tensor(x_grad)
infer_meta:
func: UnchangedInferMeta
param : [x]
kernel:
func: unpool3d_grad
data_type: x
......@@ -1207,16 +1207,6 @@
func : unique
data_type : x
- op : unpool3d
args: (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
output: Tensor(out)
infer_meta:
func: Unpool3dInferMeta
kernel:
func: unpool3d
data_type: x
backward: unpool3d_grad
- op : yolo_loss
args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
output : Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
......
......@@ -2431,6 +2431,12 @@
data_type : int
support_tensor : true
- op : unpool3d
inputs :
{x : X, indices: Indices}
outputs :
out : Out
- op : unsqueeze (unsqueeze2)
backward : unsqueeze_grad (unsqueeze2_grad), unsqueeze_double_grad(unsqueeze2_double_grad)
inputs :
......
......@@ -2153,6 +2153,16 @@
data_type: x
backward: unpool_grad
- op : unpool3d
args: (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW")
output: Tensor(out)
infer_meta:
func: Unpool3dInferMeta
kernel:
func: unpool3d
data_type: x
backward: unpool3d_grad
- op : unsqueeze
args : (Tensor x, IntArray axis = {})
output : Tensor(out), Tensor(xshape)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature Unpool3dOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature(
"unpool3d",
{"X", "Indices"},
{"ksize", "strides", "paddings", "output_size", "data_format"},
{"Out"});
}
KernelSignature Unpool3dGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"unpool3d_grad",
{"X", "Indices", "Out", "Out@GRAD"},
{"ksize", "strides", "paddings", "output_size", "data_format"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(unpool3d, phi::Unpool3dOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(unpool3d_grad, phi::Unpool3dGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册