Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dc78f3ca
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dc78f3ca
编写于
11月 16, 2017
作者:
C
chengduo
提交者:
GitHub
11月 16, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5558 from mkliegl/conv_shift_fix_camel_case
conv shift op: change to CamelCase & fix bug
上级
3edd8331
d0b601c4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
33 addition
and
30 deletion
+33
-30
paddle/operators/conv_shift_op.cu
paddle/operators/conv_shift_op.cu
+33
-30
未找到文件。
paddle/operators/conv_shift_op.cu
浏览文件 @
dc78f3ca
...
...
@@ -13,6 +13,7 @@
limitations under the License. */
#include "paddle/operators/conv_shift_op.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
...
...
@@ -22,7 +23,7 @@ using framework::Tensor;
namespace
{
inline
int
div_u
p
(
int
x
,
int
y
)
{
return
(
x
+
y
-
1
)
/
y
;
}
inline
int
DivU
p
(
int
x
,
int
y
)
{
return
(
x
+
y
-
1
)
/
y
;
}
// Some notes on the design:
//
...
...
@@ -33,9 +34,9 @@ inline int div_up(int x, int y) { return (x + y - 1) / y; }
// y is fairly small. For large y, it would probably be more efficient
// to also tile across y.
template
<
typename
T
>
__global__
void
conv_shift_forward
(
const
T
*
x
,
const
T
*
y
,
T
*
out
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftForward
(
const
T
*
x
,
const
T
*
y
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
,
T
*
out
)
{
extern
__shared__
T
mem
[];
int
tx
=
threadIdx
.
x
;
...
...
@@ -62,25 +63,26 @@ __global__ void conv_shift_forward(const T *x, const T *y, T *out, int x_width,
if
(
tx
<
num_x
)
{
int
load_i
=
(
i
-
y_half_width
+
x_width
)
%
x_width
;
sx
[
tx
]
=
x
[
k
*
x_width
+
load_i
];
}
else
{
return
;
}
__syncthreads
();
// Compute dot product of sx[tx:tx + y_width] and sy.
T
sum
=
0
;
for
(
int
j
=
0
;
j
<
y_width
;
++
j
)
{
sum
+=
sx
[
tx
+
j
]
*
sy
[
j
];
}
if
(
tx
<
num_x
)
{
// Compute dot product of sx[tx:tx + y_width] and sy.
T
sum
=
0
;
for
(
int
j
=
0
;
j
<
y_width
;
++
j
)
{
sum
+=
sx
[
tx
+
j
]
*
sy
[
j
];
}
// Save to out[k, i].
out
[
k
*
x_width
+
i
]
=
sum
;
// Save to out[k, i].
out
[
k
*
x_width
+
i
]
=
sum
;
}
}
// Compute x gradient - initial naive implementation with atomic add.
template
<
typename
T
>
__global__
void
conv_shift_dx
(
const
T
*
dout
,
const
T
*
y
,
T
*
dx
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftGradX
(
const
T
*
dout
,
const
T
*
y
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
,
T
*
dx
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
// x index
int
j
=
blockIdx
.
y
;
// y index
int
k
=
blockIdx
.
z
;
// batch index
...
...
@@ -94,8 +96,8 @@ __global__ void conv_shift_dx(const T *dout, const T *y, T *dx, int x_width,
// Compute y gradient - initial naive implementation with atomic add.
template
<
typename
T
>
__global__
void
conv_shift_dy
(
const
T
*
x
,
const
T
*
dout
,
T
*
dy
,
int
x
_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftDy
(
const
T
*
x
,
const
T
*
dout
,
int
x_width
,
int
y
_width
,
int
y_half_width
,
int
batch_size
,
T
*
dy
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
// x index
int
j
=
blockIdx
.
y
;
// y index
int
k
=
blockIdx
.
z
;
// batch index
...
...
@@ -125,15 +127,15 @@ class ConvShiftKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
int
y_half_width
=
(
y_width
-
1
)
/
2
;
const
int
x_per_block
=
256
;
int
num_x_blocks
=
div_u
p
(
x_width
,
x_per_block
);
int
num_x_blocks
=
DivU
p
(
x_width
,
x_per_block
);
int
mem_per_block
=
(
x_per_block
+
2
*
y_width
)
*
sizeof
(
T
);
dim3
grid_dim
(
num_x_blocks
,
batch_size
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
conv_shift_f
orward
<
T
><<<
grid_dim
,
x_per_block
,
mem_per_block
,
stream
>>>
(
x_data
,
y_data
,
out_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
ConvShiftF
orward
<
T
><<<
grid_dim
,
x_per_block
,
mem_per_block
,
stream
>>>
(
x_data
,
y_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
out_data
);
}
};
...
...
@@ -157,25 +159,26 @@ class ConvShiftGradKernel<platform::GPUPlace, T>
int
y_width
=
Y
->
dims
()[
1
];
int
y_half_width
=
(
y_width
-
1
)
/
2
;
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
&
device_ctx
=
context
.
cuda_device_context
();
math
::
SetConstant
<
platform
::
GPUPlace
,
T
>
zero
;
const
int
x_per_block
=
256
;
int
num_x_blocks
=
div_u
p
(
x_width
,
x_per_block
);
int
num_x_blocks
=
DivU
p
(
x_width
,
x_per_block
);
dim3
grid_dim
(
num_x_blocks
,
y_width
,
batch_size
);
if
(
dX
)
{
T
*
dx_data
=
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
cudaMemsetAsync
(
dx_data
,
0
,
dX
->
numel
()
*
sizeof
(
T
),
stream
);
conv_shift_dx
<
T
><<<
grid_dim
,
x_per_block
,
0
,
stream
>>>
(
dout_data
,
y_data
,
dx_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
zero
(
device_ctx
,
dX
,
static_cast
<
T
>
(
0.0
)
);
ConvShiftGradX
<
T
><<<
grid_dim
,
x_per_block
,
0
,
device_ctx
.
stream
()
>>>
(
dout_data
,
y_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
dx_data
);
}
if
(
dY
)
{
T
*
dy_data
=
dY
->
mutable_data
<
T
>
(
context
.
GetPlace
());
cudaMemsetAsync
(
dy_data
,
0
,
dY
->
numel
()
*
sizeof
(
T
),
stream
);
conv_shift_dy
<
T
><<<
grid_dim
,
x_per_block
,
0
,
stream
>>>
(
x_data
,
dout_data
,
dy_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
zero
(
device_ctx
,
dY
,
static_cast
<
T
>
(
0.0
)
);
ConvShiftDy
<
T
><<<
grid_dim
,
x_per_block
,
0
,
device_ctx
.
stream
()
>>>
(
x_data
,
dout_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
dy_data
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录