Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d0b601c4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d0b601c4
编写于
11月 15, 2017
作者:
M
Markus Kliegl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
address PR feedback
上级
42dd5da0
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
20 addition
and
17 deletion
+20
-17
paddle/operators/conv_shift_op.cu
paddle/operators/conv_shift_op.cu
+20
-17
未找到文件。
paddle/operators/conv_shift_op.cu
浏览文件 @
d0b601c4
...
...
@@ -13,6 +13,7 @@
limitations under the License. */
#include "paddle/operators/conv_shift_op.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
...
...
@@ -33,9 +34,9 @@ inline int DivUp(int x, int y) { return (x + y - 1) / y; }
// y is fairly small. For large y, it would probably be more efficient
// to also tile across y.
template
<
typename
T
>
__global__
void
ConvShiftForward
(
const
T
*
x
,
const
T
*
y
,
T
*
out
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftForward
(
const
T
*
x
,
const
T
*
y
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
,
T
*
out
)
{
extern
__shared__
T
mem
[];
int
tx
=
threadIdx
.
x
;
...
...
@@ -79,8 +80,9 @@ __global__ void ConvShiftForward(const T *x, const T *y, T *out, int x_width,
// Compute x gradient - initial naive implementation with atomic add.
template
<
typename
T
>
__global__
void
ConvShiftGradX
(
const
T
*
dout
,
const
T
*
y
,
T
*
dx
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftGradX
(
const
T
*
dout
,
const
T
*
y
,
int
x_width
,
int
y_width
,
int
y_half_width
,
int
batch_size
,
T
*
dx
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
// x index
int
j
=
blockIdx
.
y
;
// y index
int
k
=
blockIdx
.
z
;
// batch index
...
...
@@ -94,8 +96,8 @@ __global__ void ConvShiftGradX(const T *dout, const T *y, T *dx, int x_width,
// Compute y gradient - initial naive implementation with atomic add.
template
<
typename
T
>
__global__
void
ConvShiftDy
(
const
T
*
x
,
const
T
*
dout
,
T
*
dy
,
int
x
_width
,
int
y_
width
,
int
y_half_width
,
int
batch_size
)
{
__global__
void
ConvShiftDy
(
const
T
*
x
,
const
T
*
dout
,
int
x_width
,
int
y
_width
,
int
y_
half_width
,
int
batch_size
,
T
*
dy
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
// x index
int
j
=
blockIdx
.
y
;
// y index
int
k
=
blockIdx
.
z
;
// batch index
...
...
@@ -133,7 +135,7 @@ class ConvShiftKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
auto
stream
=
context
.
cuda_device_context
().
stream
();
ConvShiftForward
<
T
><<<
grid_dim
,
x_per_block
,
mem_per_block
,
stream
>>>
(
x_data
,
y_data
,
out_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
x_data
,
y_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
out_data
);
}
};
...
...
@@ -157,7 +159,8 @@ class ConvShiftGradKernel<platform::GPUPlace, T>
int
y_width
=
Y
->
dims
()[
1
];
int
y_half_width
=
(
y_width
-
1
)
/
2
;
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
&
device_ctx
=
context
.
cuda_device_context
();
math
::
SetConstant
<
platform
::
GPUPlace
,
T
>
zero
;
const
int
x_per_block
=
256
;
int
num_x_blocks
=
DivUp
(
x_width
,
x_per_block
);
...
...
@@ -165,17 +168,17 @@ class ConvShiftGradKernel<platform::GPUPlace, T>
if
(
dX
)
{
T
*
dx_data
=
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
cudaMemsetAsync
(
dx_data
,
0
,
dX
->
numel
()
*
sizeof
(
T
),
stream
);
ConvShiftGradX
<
T
><<<
grid_dim
,
x_per_block
,
0
,
stream
>>>
(
dout_data
,
y_data
,
dx_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
zero
(
device_ctx
,
dX
,
static_cast
<
T
>
(
0.0
)
);
ConvShiftGradX
<
T
><<<
grid_dim
,
x_per_block
,
0
,
device_ctx
.
stream
()
>>>
(
dout_data
,
y_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
dx_data
);
}
if
(
dY
)
{
T
*
dy_data
=
dY
->
mutable_data
<
T
>
(
context
.
GetPlace
());
cudaMemsetAsync
(
dy_data
,
0
,
dY
->
numel
()
*
sizeof
(
T
),
stream
);
ConvShiftDy
<
T
><<<
grid_dim
,
x_per_block
,
0
,
stream
>>>
(
x_data
,
dout_data
,
dy_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
zero
(
device_ctx
,
dY
,
static_cast
<
T
>
(
0.0
)
);
ConvShiftDy
<
T
><<<
grid_dim
,
x_per_block
,
0
,
device_ctx
.
stream
()
>>>
(
x_data
,
dout_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
,
dy_data
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录