未验证 提交 db43b541 编写于 作者: Z zyfncg 提交者: GitHub

[Pten] Remove register of matmul_v2 kernel (#39542)

* remove register of matmul_v2 kernel

* delete matmul_v2 grad register in fluid
上级 18c6f40b
......@@ -177,5 +177,5 @@ TEST(Benchmark, EagerIntermediateMLPCPU) {
USE_OP_ITSELF(scale);
USE_OP_ITSELF(elementwise_add);
USE_OP(matmul_v2);
USE_OP_ITSELF(matmul_v2);
USE_OP(reduce_sum);
......@@ -186,7 +186,7 @@ TEST(Benchmark, EagerIntermediateMLPCUDA) {
}
USE_OP_ITSELF(scale);
USE_OP(matmul_v2);
USE_OP_ITSELF(matmul_v2);
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
USE_OP_ITSELF(elementwise_add);
......
......@@ -213,5 +213,5 @@ TEST(Benchmark, FluidMLPCPU) {
USE_OP_ITSELF(scale);
USE_OP_ITSELF(elementwise_add);
USE_OP(matmul_v2);
USE_OP_ITSELF(matmul_v2);
USE_OP(reduce_sum);
......@@ -246,7 +246,7 @@ TEST(Benchmark, FluidMLPCUDA) {
} // namespace paddle
USE_OP_ITSELF(scale);
USE_OP(matmul_v2);
USE_OP_ITSELF(matmul_v2);
USE_OP(reduce_sum);
USE_OP(reduce_sum_grad);
USE_OP_ITSELF(elementwise_add);
......
......@@ -124,4 +124,4 @@ TEST(Generated, ElementwiseAdd) {
USE_OP(sigmoid);
USE_OP_ITSELF(elementwise_add);
USE_OP(matmul_v2);
USE_OP_ITSELF(matmul_v2);
......@@ -538,37 +538,3 @@ REGISTER_OPERATOR(matmul_v2_grad_grad, ops::MatMulV2OpDoubleGrad,
ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);
REGISTER_OP_CPU_KERNEL(
matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
matmul_v2_grad,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
matmul_v2_grad_grad,
ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
matmul_v2_triple_grad,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/matmul_v2_op.h"
namespace ops = paddle::operators;
namespace plf = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
matmul_v2, ops::MatMulV2Kernel<plf::CUDADeviceContext, float>,
ops::MatMulV2Kernel<plf::CUDADeviceContext, double>,
ops::MatMulV2Kernel<plf::CUDADeviceContext, plf::float16>,
ops::MatMulV2Kernel<plf::CUDADeviceContext, plf::complex<float>>,
ops::MatMulV2Kernel<plf::CUDADeviceContext, plf::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
matmul_v2_grad, ops::MatMulV2GradKernel<plf::CUDADeviceContext, float>,
ops::MatMulV2GradKernel<plf::CUDADeviceContext, double>,
ops::MatMulV2GradKernel<plf::CUDADeviceContext, plf::float16>,
ops::MatMulV2GradKernel<plf::CUDADeviceContext, plf::complex<float>>,
ops::MatMulV2GradKernel<plf::CUDADeviceContext, plf::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
matmul_v2_grad_grad,
ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::MatMulV2DoubleGradKernel<plf::CUDADeviceContext, plf::float16>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
matmul_v2_triple_grad,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::MatMulV2TripleGradKernel<plf::CUDADeviceContext, plf::float16>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>);
......@@ -37,29 +37,6 @@ limitations under the License. */
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
auto* X = ctx.Input<Tensor>("X");
auto* Y = ctx.Input<Tensor>("Y");
auto* Out = ctx.Output<Tensor>("Out");
bool trans_x = ctx.Attr<bool>("trans_x");
bool trans_y = ctx.Attr<bool>("trans_y");
auto& dev_ctx = ctx.device_context<DeviceContext>();
Out->mutable_data<T>(X->place());
// call new kernel
pten::MatmulKernel<T>(
static_cast<const typename paddle::framework::ConvertToPtenContext<
DeviceContext>::TYPE&>(dev_ctx),
*X, *Y, trans_x, trans_y, Out);
}
};
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
......@@ -133,104 +110,5 @@ static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
bool transpose_x = ctx.Attr<bool>("trans_x");
bool transpose_y = ctx.Attr<bool>("trans_y");
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) dx->mutable_data<T>(ctx.GetPlace());
if (dy) dy->mutable_data<T>(ctx.GetPlace());
auto& dev_ctx = ctx.device_context<DeviceContext>();
// call new kernel
pten::MatmulGradKernel<T>(
static_cast<const typename paddle::framework::ConvertToPtenContext<
DeviceContext>::TYPE&>(dev_ctx),
*x, *y, *dout, transpose_x, transpose_y, dx, dy);
}
};
template <typename DeviceContext, typename T>
class MatMulV2DoubleGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<framework::Tensor>("X");
auto* y = context.Input<framework::Tensor>("Y");
auto* dout = context.Input<framework::Tensor>("DOut");
auto* ddx = context.Input<framework::Tensor>("DDX");
auto* ddy = context.Input<framework::Tensor>("DDY");
auto* dx = context.Output<framework::Tensor>("DX");
auto* dy = context.Output<framework::Tensor>("DY");
auto* ddout = context.Output<framework::Tensor>("DDOut");
bool transpose_x = context.Attr<bool>("trans_x");
bool transpose_y = context.Attr<bool>("trans_y");
if (dx) dx->mutable_data<T>(context.GetPlace());
if (dy) dy->mutable_data<T>(context.GetPlace());
if (ddout) ddout->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.device_context<DeviceContext>();
// call new kernel
pten::MatmulDoubleGradKernel<T>(
static_cast<const typename paddle::framework::ConvertToPtenContext<
DeviceContext>::TYPE&>(dev_ctx),
*x, *y, *dout, *ddx, *ddy, transpose_x, transpose_y, dx, dy, ddout);
}
};
template <typename DeviceContext, typename T>
class MatMulV2TripleGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
// get input
auto* x = context.Input<framework::Tensor>("X");
auto* y = context.Input<framework::Tensor>("Y");
auto* dout = context.Input<framework::Tensor>("DOut");
auto* ddx = context.Input<framework::Tensor>("DDX");
auto* ddy = context.Input<framework::Tensor>("DDY");
auto* d_dx = context.Input<framework::Tensor>("D_DX");
auto* d_dy = context.Input<framework::Tensor>("D_DY");
auto* d_ddout = context.Input<framework::Tensor>("D_DDOut");
// get output
auto* out_d_x = context.Output<framework::Tensor>("D_X_out");
auto* out_d_y = context.Output<framework::Tensor>("D_Y_out");
auto* out_d_dout = context.Output<framework::Tensor>("D_DOut_out");
auto* out_d_ddx = context.Output<framework::Tensor>("D_DDX_out");
auto* out_d_ddy = context.Output<framework::Tensor>("D_DDY_out");
bool transpose_x = context.Attr<bool>("trans_x");
bool transpose_y = context.Attr<bool>("trans_y");
if (out_d_x) out_d_x->mutable_data<T>(context.GetPlace());
if (out_d_y) out_d_y->mutable_data<T>(context.GetPlace());
if (out_d_dout) out_d_dout->mutable_data<T>(context.GetPlace());
if (out_d_ddx) out_d_ddx->mutable_data<T>(context.GetPlace());
if (out_d_ddy) out_d_ddy->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.device_context<DeviceContext>();
// call new kernel
pten::MatmulTripleGradKernel<T>(
static_cast<const typename paddle::framework::ConvertToPtenContext<
DeviceContext>::TYPE&>(dev_ctx),
*x, *y, *dout, *ddx, *ddy, *d_dx, *d_dy, *d_ddout, transpose_x,
transpose_y, out_d_x, out_d_y, out_d_dout, out_d_ddx, out_d_ddy);
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册