Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
18c6f40b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
18c6f40b
编写于
2月 17, 2022
作者:
B
Baibaifan
提交者:
GitHub
2月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimizer sharding paramters (#39581)
上级
1f7f8561
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
45 addition
and
78 deletion
+45
-78
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
...optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
+22
-2
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
...stributed/fleet/meta_parallel/sharding/sharding_stage2.py
+2
-38
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
...stributed/fleet/meta_parallel/sharding/sharding_stage3.py
+7
-12
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
+8
-7
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage2_offload.py
+2
-3
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
+3
-11
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage3_offload.py
+1
-5
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -65,9 +65,9 @@ class ShardingOptimizerStage2(Optimizer):
params
,
optim
,
group
=
None
,
broadcast_fp16
=
False
,
offload
=
False
,
device
=
"gpu"
,
pertrain_sync_models
=
True
,
**
kw
):
super
().
__init__
(
optim
.
_learning_rate
,
params
,
kw
)
...
...
@@ -98,8 +98,12 @@ class ShardingOptimizerStage2(Optimizer):
self
.
world_size
=
self
.
group
.
nranks
self
.
rank
=
self
.
group
.
rank
self
.
_global_root_rank
=
0
# Synchronous all ranks models
if
pertrain_sync_models
:
self
.
_sync_params_and_buffers
()
self
.
broadcast_fp16
=
broadcast_fp16
self
.
param_storages
=
{}
# {dtype: {rank: InternalStorage}}
if
isinstance
(
self
.
_optim
.
_grad_clip
,
ClipGradByGlobalNorm
):
...
...
@@ -132,6 +136,22 @@ class ShardingOptimizerStage2(Optimizer):
# Update optimizer parameters and adjust parameter storage and use according to rank.
self
.
_update_opt_status
()
@
paddle
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
"""
for
p
in
self
.
_local_params
:
dist
.
broadcast
(
p
,
src
=
self
.
_global_root_rank
,
group
=
self
.
group
,
use_calc_stream
=
True
)
# Multi stream operation will be supported later
dist
.
wait
(
tensor
=
p
,
group
=
self
.
group
,
use_calc_stream
=
True
)
def
_generate_master_params
(
self
,
trainable_params
):
if
self
.
offload
:
for
param
in
trainable_params
:
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -61,12 +61,10 @@ class ShardingStage2(nn.Layer):
sharding_optimizer
,
group
=
None
,
sync_buffers
=
False
,
pertrain_sync_models
=
True
,
buffer_max_size
=
2
**
23
,
#8MB
auto_refresh_trainable
=
True
,
device
=
"gpu"
,
use_grad_storage
=
True
,
accumulate_grads
=
False
):
use_grad_storage
=
True
):
super
().
__init__
()
# training options
...
...
@@ -81,9 +79,6 @@ class ShardingStage2(nn.Layer):
self
.
_sync_buffers
=
sync_buffers
self
.
_auto_refresh_trainable
=
auto_refresh_trainable
# Gradient accumulation, Gradient flip
self
.
_accumulate_grads
=
accumulate_grads
# Communication related attributes
self
.
_group
=
dist
.
new_group
(
_get_global_group
()
.
ranks
)
if
group
is
None
else
group
...
...
@@ -128,16 +123,11 @@ class ShardingStage2(nn.Layer):
# Set backward pass hooks
self
.
_bw_hooks
=
[]
# Synchronous all ranks models
if
pertrain_sync_models
:
self
.
_sync_params_and_buffers
()
# Set tasks flow
self
.
_tasks_flow
=
deque
()
# Define optimizer step and clear_grad
if
self
.
_accumulate_grads
:
self
.
_redefine_opt_step
()
self
.
_redefine_opt_step
()
self
.
_redefine_opt_clear
()
def
forward
(
self
,
*
inputs
,
**
kwargs
):
...
...
@@ -313,9 +303,6 @@ class ShardingStage2(nn.Layer):
# Change reduce information
self
.
_grad_reduced
[
index
]
=
False
if
not
self
.
_accumulate_grads
:
param
.
grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
param
.
_reset_grad_inplace_version
(
True
)
# Clear the gradient that does not belong to the current rank through the callback function
def
cleanup
():
...
...
@@ -362,11 +349,6 @@ class ShardingStage2(nn.Layer):
if
grad_storage
.
all_checked_in
:
assert
grad_storage
.
buffer
is
not
None
# Normalize all ranks grad_storage
if
not
self
.
_accumulate_grads
:
grad_storage
.
buffer
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Clearing up the grad_storage buffer
def
cleanup
():
if
dst_rank
!=
self
.
_rank
:
...
...
@@ -432,22 +414,6 @@ class ShardingStage2(nn.Layer):
self
.
_bw_hooks
.
append
(
param
.
_register_backward_hook
(
reduce_function
))
@
paddle
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
"""
for
t
in
self
.
_layer
.
parameters
():
dist
.
broadcast
(
t
,
src
=
self
.
_global_root_rank
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
# Multi stream operation will be supported later
dist
.
wait
(
tensor
=
t
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
def
_setup_use_grad_storage
(
self
):
"""
Integrate the parameters gradient into a continuous memory according to rank, and support the update of training parameters.
...
...
@@ -555,8 +521,6 @@ class ShardingStage2(nn.Layer):
return
rank_buffer_size
def
_redefine_opt_step
(
self
):
if
not
self
.
_accumulate_grads
:
return
grad_func
=
self
.
_grad_scale
for
opt
in
self
.
_sharding_optimizers
:
opt_step
=
opt
.
step
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
浏览文件 @
18c6f40b
...
...
@@ -72,7 +72,6 @@ class ShardingStage3(nn.Layer):
device
=
"gpu"
,
segment_size
=
2
**
15
,
pertrain_sync_models
=
True
,
accumulate_grads
=
False
,
offload
=
False
,
sync_comm
=
False
):
super
().
__init__
()
...
...
@@ -82,7 +81,6 @@ class ShardingStage3(nn.Layer):
self
.
_layer
=
layer
self
.
_default_device
=
device
self
.
__sync_buffers
=
sync_buffers
self
.
_accumulate_grads
=
accumulate_grads
self
.
_offload
=
offload
self
.
_sync_comm
=
sync_comm
# segmentation size
...
...
@@ -190,6 +188,7 @@ class ShardingStage3(nn.Layer):
param
.
fw_storage
.
clear_gradient
(
False
)
param
.
fw_storage
.
_gradient_set_empty
(
False
)
param
.
bw_storage
.
_clear
()
param
.
bw_storage
=
None
# 2.Handle unslice param
if
not
self
.
_offload
:
for
grad_storage
in
self
.
_grad_storages
.
values
():
...
...
@@ -446,13 +445,12 @@ class ShardingStage3(nn.Layer):
param
,
"fw_storage"
),
"Find {} don't have fw_storage attribute"
.
format
(
param
.
name
)
if
self
.
_accumulate_grads
:
if
self
.
_offload
:
with
device_guard
(
device
=
"cpu"
):
param
.
bw_storage
.
scale_
(
scale
=
self
.
_world_size_scaling
)
else
:
# Gradient average
if
self
.
_offload
:
with
device_guard
(
device
=
"cpu"
):
param
.
bw_storage
.
scale_
(
scale
=
self
.
_world_size_scaling
)
else
:
param
.
bw_storage
.
scale_
(
scale
=
self
.
_world_size_scaling
)
param
.
fw_storage
=
_VarBaseWrapper
(
param
)
assert
param
.
fw_storage
.
grad
is
None
param
.
fw_storage
.
_copy_gradient_from
(
param
.
bw_storage
)
...
...
@@ -526,8 +524,6 @@ class ShardingStage3(nn.Layer):
def
reduce
(
*
_
):
if
param
.
name
in
self
.
_task_flow
.
full_grad
.
keys
():
full_grad
=
self
.
_task_flow
.
full_grad
[
param
.
name
]
if
not
self
.
_accumulate_grads
:
full_grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Only support sync allreduce current rank's layer now
dist
.
all_reduce
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
...
...
@@ -535,8 +531,7 @@ class ShardingStage3(nn.Layer):
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
start
,
end
=
self
.
_param2buffer
[
param
.
name
][
self
.
_rank
]
if
not
self
.
_accumulate_grads
or
param
.
bw_storage
is
None
or
not
param
.
bw_storage
.
value
(
).
get_tensor
().
_is_initialized
():
if
param
.
bw_storage
is
None
:
param
.
bw_storage
=
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
().
clone
()
if
self
.
_offload
:
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -27,7 +27,7 @@ from paddle.fluid.dygraph import nn
from
paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2
import
ShardingOptimizerStage2
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2
import
ShardingStage2
seed
=
202
1
seed
=
202
2
epoch
=
2
linear_size
=
1000
...
...
@@ -105,11 +105,7 @@ def train_mlp(model,
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
batch_size
==
20
)
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
else
:
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
model
=
fleet
.
distributed_model
(
model
)
...
...
@@ -140,6 +136,8 @@ def train_mlp(model,
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
avg_loss
.
backward
()
if
not
accumulate_grad
:
...
...
@@ -166,6 +164,7 @@ def test_dp_stage2():
mlp4
.
set_state_dict
(
state_dict
)
mlp5
.
set_state_dict
(
state_dict
)
# DP VS stage2
dp_params
=
train_mlp
(
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
)
stage2_params
=
train_mlp
(
...
...
@@ -174,7 +173,8 @@ def test_dp_stage2():
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
)
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
)
# stage2 accumulate grad
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
,
accumulate_grad
=
True
)
stage2_accumulate_grad
=
train_mlp
(
mlp4
,
sharding_stage
=
2
,
batch_size
=
20
,
accumulate_grad
=
True
)
for
i
in
range
(
len
(
stage2_params
)):
...
...
@@ -184,6 +184,7 @@ def test_dp_stage2():
rtol
=
1e-5
,
atol
=
1e-5
)
# stage2 param list VS param group
stage2_params
=
train_mlp
(
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
True
)
for
i
in
range
(
len
(
dp_params
)):
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
浏览文件 @
18c6f40b
...
...
@@ -43,13 +43,12 @@ def train_mlp(model, offload=False):
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
True
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
scaler
=
ShardingScaler
(
scaler
)
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
offload
=
offload
)
model
=
ShardingStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
False
)
model
=
ShardingStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
)
train_reader
=
paddle
.
batch
(
reader_decorator
(
linear_size
),
batch_size
=
batch_size
,
drop_last
=
True
)
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
浏览文件 @
18c6f40b
...
...
@@ -101,18 +101,10 @@ def train_mlp(model,
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
batch_size
==
20
)
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
elif
sharding_stage
==
3
:
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
accumulate_grads
=
batch_size
==
20
,
sync_comm
=
recompute
)
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_comm
=
recompute
)
# check optimizer.minimize() error
if
test_minimize
:
...
...
@@ -231,7 +223,7 @@ def test_stage2_stage3():
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-
4
)
atol
=
1e-
3
)
# fp16 recompute
stage3_params
=
train_mlp
(
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
浏览文件 @
18c6f40b
...
...
@@ -91,11 +91,7 @@ def train_mlp(model,
scaler
=
ShardingScaler
(
scaler
)
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
,
accumulate_grads
=
accumulate_grad
)
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
)
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录