Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4024a6e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d4024a6e
编写于
4月 13, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish memory_optimizer code with mode comments and less identions
上级
817df54b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
88 addition
and
47 deletion
+88
-47
python/paddle/fluid/memory_optimization_transpiler.py
python/paddle/fluid/memory_optimization_transpiler.py
+88
-47
未找到文件。
python/paddle/fluid/memory_optimization_transpiler.py
浏览文件 @
d4024a6e
...
...
@@ -29,17 +29,20 @@ dtype_to_size = {
core
.
VarDesc
.
VarType
.
BOOL
:
1
}
sub_block_ops
=
[
SUB_BLOCK_OPS
=
[
"while"
,
"while_grad"
,
"parallel_do"
,
"parallel_do_grad"
,
"conditional_block"
,
"conditional_block_grad"
]
SUB_BLOCK_PAIR
=
[(
"while"
,
"while_grad"
),
(
"parallel_do"
,
"parallel_do_grad"
),
(
"conditional_block"
,
"conditional_block_grad"
)]
PRINT_LOG
=
False
class
ControlFlowGraph
(
object
):
def
__init__
(
self
,
P
rogram
,
ops
,
forward_num
,
skip_opt
):
self
.
_program
=
P
rogram
def
__init__
(
self
,
p
rogram
,
ops
,
forward_num
,
skip_opt
):
self
.
_program
=
p
rogram
self
.
_ops
=
ops
self
.
_forward_num
=
forward_num
self
.
_successors
=
defaultdict
(
set
)
...
...
@@ -51,6 +54,7 @@ class ControlFlowGraph(object):
self
.
_skip_opt
=
skip_opt
def
_add_connections
(
self
,
connections
):
"""Populates _successors and _presuccessors for two neighbor nodes."""
for
node1
,
node2
in
connections
:
self
.
_add
(
node1
,
node2
)
...
...
@@ -58,7 +62,11 @@ class ControlFlowGraph(object):
self
.
_successors
[
node1
].
add
(
node2
)
self
.
_presuccessors
[
node2
].
add
(
node1
)
# TODO(panyx0718): We need to have a unified way of building intermediate
# representation.
def
_build_graph
(
self
):
"""Build a graph based on op sequence.
"""
self
.
op_size
=
len
(
self
.
_ops
)
op_node_connections
=
[(
i
,
i
+
1
)
for
i
in
range
(
self
.
op_size
-
1
)]
self
.
_add_connections
(
op_node_connections
)
...
...
@@ -82,15 +90,14 @@ class ControlFlowGraph(object):
self
.
_live_out
[
i
].
add
(
new_name
)
def
_reach_fixed_point
(
self
,
live_in
,
live_out
):
"""Check if the liveness set has stablized."""
if
len
(
live_in
)
!=
len
(
self
.
_live_in
):
return
False
if
len
(
live_out
)
!=
len
(
self
.
_live_out
):
return
False
for
i
in
range
(
self
.
op_size
):
if
live_in
[
i
]
!=
self
.
_live_in
[
i
]:
return
False
for
i
in
range
(
self
.
op_size
):
if
live_out
[
i
]
!=
self
.
_live_out
[
i
]:
if
(
live_in
[
i
]
!=
self
.
_live_in
[
i
]
or
live_out
[
i
]
!=
self
.
_live_out
[
i
]):
return
False
return
True
...
...
@@ -98,6 +105,8 @@ class ControlFlowGraph(object):
self
.
_build_graph
()
live_in
=
defaultdict
(
set
)
live_out
=
defaultdict
(
set
)
# Repeatedly apply liveness updates until the algorithm stablize
# on a complete set live input vars and live output vars.
while
True
:
for
i
in
range
(
self
.
op_size
,
0
,
-
1
):
live_in
[
i
]
=
set
(
self
.
_live_in
[
i
])
...
...
@@ -141,6 +150,8 @@ class ControlFlowGraph(object):
return
False
return
True
# TODO(panyx0718): This needs to be less hacky. It seems memory optimization
# doesn't consider vars copied between cpu and gpu.
def
_update_skip_opt_set
(
self
):
for
i
in
range
(
self
.
op_size
):
op
=
self
.
_ops
[
i
]
...
...
@@ -154,7 +165,7 @@ class ControlFlowGraph(object):
bwd_id
=
0
for
i
in
range
(
self
.
op_size
):
op
=
self
.
_ops
[
i
]
if
op
.
type
()
in
sub_block_ops
:
if
op
.
type
()
in
SUB_BLOCK_OPS
:
continue
block_desc
=
op
.
block
()
is_forward
=
i
<
self
.
_forward_num
...
...
@@ -177,13 +188,15 @@ class ControlFlowGraph(object):
def
compare_shape
(
x_shape
,
cache_shape
,
opt_level
):
if
opt_level
==
0
:
return
x_shape
==
cache_shape
if
opt_level
==
1
:
el
if
opt_level
==
1
:
if
(
x_shape
[
0
]
==
-
1
)
^
(
cache_shape
[
0
]
==
-
1
):
return
False
x_size
=
abs
(
reduce
(
lambda
x
,
y
:
x
*
y
,
x_shape
))
cache_size
=
abs
(
reduce
(
lambda
x
,
y
:
x
*
y
,
cache_shape
))
if
x_size
<=
cache_size
:
return
True
else
:
raise
ValueError
(
"only support opt_level 0 or 1."
)
return
False
self
.
_dataflow_analyze
()
...
...
@@ -191,10 +204,9 @@ class ControlFlowGraph(object):
self
.
pool
=
[]
for
i
in
range
(
self
.
op_size
):
op
=
self
.
_ops
[
i
]
if
op
.
type
()
in
sub_block_ops
:
if
op
.
type
()
in
SUB_BLOCK_OPS
:
continue
block_desc
=
op
.
block
()
self
.
current_block_desc
=
block_desc
is_forward
=
i
<
self
.
_forward_num
if
self
.
pool
:
defs_can_optimize
=
filter
(
...
...
@@ -211,37 +223,40 @@ class ControlFlowGraph(object):
for
index
,
cache_pair
in
enumerate
(
self
.
pool
):
cache_var
=
cache_pair
[
0
]
cache_shape
=
cache_pair
[
1
]
if
compare_shape
(
x_shape
,
cache_shape
,
level
):
if
self
.
_has_var
(
block_desc
,
cache_var
,
is_forward
):
x_dtype
=
self
.
_find_var
(
block_desc
,
x
,
is_forward
).
dtype
()
cache_dtype
=
self
.
_find_var
(
block_desc
,
cache_var
,
is_forward
).
dtype
()
# TODO(qijun): actually, we should compare dtype_to_size[x_dtype]
# and dtype_to_size[cache_dtype]
if
x_dtype
==
cache_dtype
:
if
PRINT_LOG
:
print
(
(
"Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s "
)
%
(
index
,
x
,
cache_var
,
str
(
cache_shape
)))
self
.
pool
.
pop
(
index
)
if
x
==
cache_var
:
break
_rename_arg_
(
self
.
_ops
,
x
,
cache_var
,
begin_idx
=
i
)
self
.
_program
.
block
(
block_desc
.
id
).
var
(
str
(
x
)).
desc
=
self
.
_find_var
(
block_desc
,
cache_var
,
is_forward
)
self
.
_update_graph
(
x
,
cache_var
,
begin_idx
=
i
)
break
in_diff
,
out_diff
=
self
.
_get_diff
(
self
.
_live_in
[
i
],
self
.
_live_out
[
i
])
if
not
compare_shape
(
x_shape
,
cache_shape
,
level
):
continue
if
not
self
.
_has_var
(
block_desc
,
cache_var
,
is_forward
):
continue
x_dtype
=
self
.
_find_var
(
block_desc
,
x
,
is_forward
).
dtype
()
cache_dtype
=
self
.
_find_var
(
block_desc
,
cache_var
,
is_forward
).
dtype
()
# TODO(qijun): actually, we should compare
# dtype_to_size[x_dtype] and dtype_to_size[cache_dtype]
if
x_dtype
!=
cache_dtype
:
continue
if
PRINT_LOG
:
print
((
"Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s "
)
%
(
index
,
x
,
cache_var
,
str
(
cache_shape
)))
self
.
pool
.
pop
(
index
)
if
x
==
cache_var
:
break
# Rename the var to the cache var already with
# memory allocated in order to reuse the memory.
_rename_arg_
(
self
.
_ops
,
x
,
cache_var
,
begin_idx
=
i
)
self
.
_program
.
block
(
block_desc
.
id
).
var
(
str
(
x
)).
desc
=
self
.
_find_var
(
block_desc
,
cache_var
,
is_forward
)
self
.
_update_graph
(
x
,
cache_var
,
begin_idx
=
i
)
break
in_diff
,
_
=
self
.
_get_diff
(
self
.
_live_in
[
i
],
self
.
_live_out
[
i
])
can_optimize
=
filter
(
lambda
x
:
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
),
in_diff
)
...
...
@@ -252,6 +267,19 @@ class ControlFlowGraph(object):
def
_process_sub_block_pair
(
pdesc
,
sub_block_pair
):
"""Creates a list of tuple each of which tracks info of a subblock.
Note: this function doesn't handle nested subblocks yet.
TODO(panyx0718): assert if case nested subblocks happen.
:param pdesc: ProgramDesc.
:param sub_block_pair: A list op pairs. Each op pair is the forward
op and backward op. The ops in the list are special that they contain
a subblock of ops.
:return: A list of tuples, each tuple is (all ops in a subblock pair
including forward and backward, number of forward ops,
all output args names of the ops in the subblock pairs).
"""
ops_list
=
[]
block_desc
=
pdesc
.
block
(
0
)
op_size
=
block_desc
.
op_size
()
...
...
@@ -308,6 +336,11 @@ def _process_sub_block_pair(pdesc, sub_block_pair):
def
_get_cfgs
(
input_program
):
"""Process each block and create ControlFlowGraph for each of them.
:param input_program: Program object.
:return: A list of ControlFlowGraph, each corresponds to a block.
"""
ops_list
=
[]
pdesc
=
input_program
.
get_desc
()
block_desc
=
pdesc
.
block
(
0
)
...
...
@@ -316,11 +349,8 @@ def _get_cfgs(input_program):
ops_list
.
append
(
([
block_desc
.
op
(
i
)
for
i
in
range
(
op_size
)],
op_size
,
set
()))
sub_block_pair
=
[(
"while"
,
"while_grad"
),
(
"parallel_do"
,
"parallel_do_grad"
),
(
"conditional_block"
,
"conditional_block_grad"
)]
ops_list
.
extend
(
_process_sub_block_pair
(
pdesc
,
sub_block_pair
))
# Only process one level of nested subblock.
ops_list
.
extend
(
_process_sub_block_pair
(
pdesc
,
SUB_BLOCK_PAIR
))
cfgs
=
[
ControlFlowGraph
(
input_program
,
ops
,
forward_num
,
skip_opt
)
...
...
@@ -330,6 +360,17 @@ def _get_cfgs(input_program):
def
memory_optimize
(
input_program
,
print_log
=
False
,
level
=
0
):
"""Optimize memory by reusing var memory.
Note: it doesn't not support subblock nested in subblock.
:param input_program: Input Program
:param print_log: whether to print debug log.
:param level: If level=0, reuse if the shape is completely equal, o
:return:
"""
if
level
!=
0
and
level
!=
1
:
raise
ValueError
(
"only support opt_level 0 or 1."
)
global
PRINT_LOG
PRINT_LOG
=
print_log
cfgs
=
_get_cfgs
(
input_program
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录