From d4024a6ebd8d25a287bf4671e06ea8fa781b85fd Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Fri, 13 Apr 2018 20:14:42 -0700 Subject: [PATCH] Polish memory_optimizer code with mode comments and less identions --- .../fluid/memory_optimization_transpiler.py | 135 ++++++++++++------ 1 file changed, 88 insertions(+), 47 deletions(-) diff --git a/python/paddle/fluid/memory_optimization_transpiler.py b/python/paddle/fluid/memory_optimization_transpiler.py index 41d1eca82e8..20ed1910420 100644 --- a/python/paddle/fluid/memory_optimization_transpiler.py +++ b/python/paddle/fluid/memory_optimization_transpiler.py @@ -29,17 +29,20 @@ dtype_to_size = { core.VarDesc.VarType.BOOL: 1 } -sub_block_ops = [ +SUB_BLOCK_OPS = [ "while", "while_grad", "parallel_do", "parallel_do_grad", "conditional_block", "conditional_block_grad" ] +SUB_BLOCK_PAIR = [("while", "while_grad"), ("parallel_do", "parallel_do_grad"), + ("conditional_block", "conditional_block_grad")] + PRINT_LOG = False class ControlFlowGraph(object): - def __init__(self, Program, ops, forward_num, skip_opt): - self._program = Program + def __init__(self, program, ops, forward_num, skip_opt): + self._program = program self._ops = ops self._forward_num = forward_num self._successors = defaultdict(set) @@ -51,6 +54,7 @@ class ControlFlowGraph(object): self._skip_opt = skip_opt def _add_connections(self, connections): + """Populates _successors and _presuccessors for two neighbor nodes.""" for node1, node2 in connections: self._add(node1, node2) @@ -58,7 +62,11 @@ class ControlFlowGraph(object): self._successors[node1].add(node2) self._presuccessors[node2].add(node1) + # TODO(panyx0718): We need to have a unified way of building intermediate + # representation. def _build_graph(self): + """Build a graph based on op sequence. + """ self.op_size = len(self._ops) op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)] self._add_connections(op_node_connections) @@ -82,15 +90,14 @@ class ControlFlowGraph(object): self._live_out[i].add(new_name) def _reach_fixed_point(self, live_in, live_out): + """Check if the liveness set has stablized.""" if len(live_in) != len(self._live_in): return False if len(live_out) != len(self._live_out): return False for i in range(self.op_size): - if live_in[i] != self._live_in[i]: - return False - for i in range(self.op_size): - if live_out[i] != self._live_out[i]: + if (live_in[i] != self._live_in[i] or + live_out[i] != self._live_out[i]): return False return True @@ -98,6 +105,8 @@ class ControlFlowGraph(object): self._build_graph() live_in = defaultdict(set) live_out = defaultdict(set) + # Repeatedly apply liveness updates until the algorithm stablize + # on a complete set live input vars and live output vars. while True: for i in range(self.op_size, 0, -1): live_in[i] = set(self._live_in[i]) @@ -141,6 +150,8 @@ class ControlFlowGraph(object): return False return True + # TODO(panyx0718): This needs to be less hacky. It seems memory optimization + # doesn't consider vars copied between cpu and gpu. def _update_skip_opt_set(self): for i in range(self.op_size): op = self._ops[i] @@ -154,7 +165,7 @@ class ControlFlowGraph(object): bwd_id = 0 for i in range(self.op_size): op = self._ops[i] - if op.type() in sub_block_ops: + if op.type() in SUB_BLOCK_OPS: continue block_desc = op.block() is_forward = i < self._forward_num @@ -177,13 +188,15 @@ class ControlFlowGraph(object): def compare_shape(x_shape, cache_shape, opt_level): if opt_level == 0: return x_shape == cache_shape - if opt_level == 1: + elif opt_level == 1: if (x_shape[0] == -1) ^ (cache_shape[0] == -1): return False x_size = abs(reduce(lambda x, y: x * y, x_shape)) cache_size = abs(reduce(lambda x, y: x * y, cache_shape)) if x_size <= cache_size: return True + else: + raise ValueError("only support opt_level 0 or 1.") return False self._dataflow_analyze() @@ -191,10 +204,9 @@ class ControlFlowGraph(object): self.pool = [] for i in range(self.op_size): op = self._ops[i] - if op.type() in sub_block_ops: + if op.type() in SUB_BLOCK_OPS: continue block_desc = op.block() - self.current_block_desc = block_desc is_forward = i < self._forward_num if self.pool: defs_can_optimize = filter( @@ -211,37 +223,40 @@ class ControlFlowGraph(object): for index, cache_pair in enumerate(self.pool): cache_var = cache_pair[0] cache_shape = cache_pair[1] - if compare_shape(x_shape, cache_shape, level): - if self._has_var(block_desc, cache_var, is_forward): - x_dtype = self._find_var(block_desc, x, - is_forward).dtype() - cache_dtype = self._find_var( - block_desc, cache_var, is_forward).dtype() - # TODO(qijun): actually, we should compare dtype_to_size[x_dtype] - # and dtype_to_size[cache_dtype] - if x_dtype == cache_dtype: - if PRINT_LOG: - print( - ("Hit Cache !!!! cache pool index " - "is %d, var name is %s, " - "cached var name is %s, " - "var shape is %s ") % - (index, x, cache_var, - str(cache_shape))) - self.pool.pop(index) - if x == cache_var: - break - _rename_arg_( - self._ops, x, cache_var, begin_idx=i) - self._program.block(block_desc.id).var( - str(x)).desc = self._find_var( - block_desc, cache_var, is_forward) - self._update_graph( - x, cache_var, begin_idx=i) - break - - in_diff, out_diff = self._get_diff(self._live_in[i], - self._live_out[i]) + if not compare_shape(x_shape, cache_shape, level): + continue + + if not self._has_var(block_desc, cache_var, is_forward): + continue + + x_dtype = self._find_var(block_desc, x, + is_forward).dtype() + cache_dtype = self._find_var(block_desc, cache_var, + is_forward).dtype() + # TODO(qijun): actually, we should compare + # dtype_to_size[x_dtype] and dtype_to_size[cache_dtype] + if x_dtype != cache_dtype: + continue + + if PRINT_LOG: + print(("Hit Cache !!!! cache pool index " + "is %d, var name is %s, " + "cached var name is %s, " + "var shape is %s ") % (index, x, cache_var, + str(cache_shape))) + self.pool.pop(index) + if x == cache_var: + break + # Rename the var to the cache var already with + # memory allocated in order to reuse the memory. + _rename_arg_(self._ops, x, cache_var, begin_idx=i) + self._program.block(block_desc.id).var(str( + x)).desc = self._find_var(block_desc, cache_var, + is_forward) + self._update_graph(x, cache_var, begin_idx=i) + break + + in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i]) can_optimize = filter( lambda x: self._check_var_validity(block_desc, x, is_forward), in_diff) @@ -252,6 +267,19 @@ class ControlFlowGraph(object): def _process_sub_block_pair(pdesc, sub_block_pair): + """Creates a list of tuple each of which tracks info of a subblock. + + Note: this function doesn't handle nested subblocks yet. + TODO(panyx0718): assert if case nested subblocks happen. + + :param pdesc: ProgramDesc. + :param sub_block_pair: A list op pairs. Each op pair is the forward + op and backward op. The ops in the list are special that they contain + a subblock of ops. + :return: A list of tuples, each tuple is (all ops in a subblock pair + including forward and backward, number of forward ops, + all output args names of the ops in the subblock pairs). + """ ops_list = [] block_desc = pdesc.block(0) op_size = block_desc.op_size() @@ -308,6 +336,11 @@ def _process_sub_block_pair(pdesc, sub_block_pair): def _get_cfgs(input_program): + """Process each block and create ControlFlowGraph for each of them. + + :param input_program: Program object. + :return: A list of ControlFlowGraph, each corresponds to a block. + """ ops_list = [] pdesc = input_program.get_desc() block_desc = pdesc.block(0) @@ -316,11 +349,8 @@ def _get_cfgs(input_program): ops_list.append( ([block_desc.op(i) for i in range(op_size)], op_size, set())) - sub_block_pair = [("while", "while_grad"), ("parallel_do", - "parallel_do_grad"), - ("conditional_block", "conditional_block_grad")] - - ops_list.extend(_process_sub_block_pair(pdesc, sub_block_pair)) + # Only process one level of nested subblock. + ops_list.extend(_process_sub_block_pair(pdesc, SUB_BLOCK_PAIR)) cfgs = [ ControlFlowGraph(input_program, ops, forward_num, skip_opt) @@ -330,6 +360,17 @@ def _get_cfgs(input_program): def memory_optimize(input_program, print_log=False, level=0): + """Optimize memory by reusing var memory. + + Note: it doesn't not support subblock nested in subblock. + + :param input_program: Input Program + :param print_log: whether to print debug log. + :param level: If level=0, reuse if the shape is completely equal, o + :return: + """ + if level != 0 and level != 1: + raise ValueError("only support opt_level 0 or 1.") global PRINT_LOG PRINT_LOG = print_log cfgs = _get_cfgs(input_program) -- GitLab