提交 d3e30146 编写于 作者: C caoying03

Merge branch 'develop' into add_nest_sequence_select

......@@ -17,10 +17,14 @@
- id: detect-private-key
files: (?!.*third_party)^.*$ | (?!.*book)^.*$
- id: end-of-file-fixer
- repo: https://github.com/PaddlePaddle/clang-format-pre-commit-hook.git
sha: 28c0ea8a67a3e2dbbf4822ef44e85b63a0080a29
- repo: local
hooks:
- id: clang-formater
- id: clang-format
name: clang-format
description: Format files with ClangFormat.
entry: clang-format -i
language: system
files: \.(c|cc|cxx|cpp|h|hpp|hxx)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang
sha: 8337620115c25ff8333f1b1a493bd031049bd7c0
hooks:
......
......@@ -198,6 +198,10 @@ identity_projection
.. autoclass:: paddle.v2.layer.identity_projection
:noindex:
slice_projection
-------------------
.. autoclass:: paddle.v2.layer.slice_projection
:noindex:
table_projection
----------------
......
......@@ -37,8 +37,8 @@ Scope is an association of a name to variable. All variables belong to `Scope`.
```cpp
class Scope {
public:
Variable* CreateVariable(const std::string& name);
const Variable* GetVariable(const std::string& name) const;
Variable* NewVar(const std::string& name);
const Variable* FindVar(const std::string& name) const;
private:
std::unordered_map<std::string, std::unique_ptr<Variable>> vars_;
......@@ -58,12 +58,12 @@ class Scope {
public:
Scope(const std::shared_ptr<Scope>& scope): parent_(scope) {}
Variable* GetVariable(const std::string& name) const {
Variable* FindVar(const std::string& name) const {
auto it = vars_.find(name);
if (it != vars_.end()) {
return it->second.get();
} else if (parent_ != nullptr) {
return parent_->GetVariable(name);
return parent_->FindVar(name);
} else {
return nullptr;
}
......@@ -95,10 +95,10 @@ class Scope {
static std::shared_ptr<Scope> Create(const std::shared_ptr<Scope>& parent = nullptr);
// return nullptr if not found.
Variable* GetVariable(const std::string& name) const;
Variable* FindVar(const std::string& name) const;
// return if already contains same name variable.
Variable* CreateVariable(const std::string& name);
Variable* NewVar(const std::string& name);
private:
std::shared_ptr<Scope> parent_;
......@@ -107,11 +107,11 @@ class Scope {
```
## Only scope can create a variable
To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `CreateVariable` can construct `Variable`.
To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `NewVar` can construct `Variable`.
## When scope destroyed, all variables inside this scope should be destroyed together
The scope hold unique pointers for all variables. User can `GetVariable` from scope, but he should not hold this pointer as a member variable. Because when scope is destroyed, all variables inside this scope will be destroyed together.
The scope hold unique pointers for all variables. User can `FindVar` from scope, but he should not hold this pointer as a member variable. Because when scope is destroyed, all variables inside this scope will be destroyed together.
## Sharing a parent scope
......@@ -121,4 +121,4 @@ Also, as the parent scope is a `shared_ptr`, we can only `Create()` a scope shar
## Orthogonal interface
`GetVariable` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `CreateVariable` will return a `Error` when there is a name conflict locally. Combine `GetVariable` and `CreateVariable`, we can implement `CreateOrGetVariable` easily.
`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return a `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily.
......@@ -3,24 +3,11 @@ import paddle.v2.dataset.uci_housing as uci_housing
import paddle.v2.master as master
import os
import cPickle as pickle
from paddle.v2.reader.creator import cloud_reader
etcd_ip = os.getenv("MASTER_IP", "127.0.0.1")
etcd_endpoint = "http://" + etcd_ip + ":2379"
print "connecting to master, etcd endpoints: ", etcd_endpoint
master_client = master.client(etcd_endpoint, 5, 64)
def cloud_reader():
global master_client
master_client.set_dataset(
["/pfs/dlnel/public/dataset/uci_housing/uci_housing-*"], passes=30)
while 1:
r, e = master_client.next_record()
if not r:
if e != -2: # other errors
print "get record error:", e
break
yield pickle.loads(r)
etcd_endpoints = "http://" + etcd_ip + ":2379"
print "etcd endpoints: ", etcd_endpoints
def main():
......@@ -49,7 +36,7 @@ def main():
parameters=parameters,
update_equation=optimizer,
is_local=False,
pserver_spec=etcd_endpoint,
pserver_spec=etcd_endpoints,
use_etcd=True)
# event_handler to print training and testing info
......@@ -75,7 +62,11 @@ def main():
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
cloud_reader, buf_size=500), batch_size=2),
cloud_reader(
["/pfs/dlnel/public/dataset/uci_housing/uci_housing*"],
etcd_endpoints),
buf_size=500),
batch_size=2),
feeding={'x': 0,
'y': 1},
event_handler=event_handler,
......
......@@ -269,8 +269,7 @@ void hl_sequence2batch_copy_padding(real* batch,
int blockDimY = CUDA_BLOCK_SIZE / blockDimX;
dim3 threads(blockDimX, blockDimY);
int gridDimX = (maxSequenceLength * blockDimX + CUDA_BLOCK_SIZE - 1) /
CUDA_BLOCK_SIZE;
int gridDimX = (maxSequenceLength + blockDimY - 1) / blockDimY;
int gridDimY = numSequences;
dim3 grid(gridDimX, gridDimY);
......
......@@ -8,7 +8,9 @@ cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_test(variable_test SRCS variable_test.cc)
cc_test(scope_test SRCS scope_test.cc)
cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attr_type SRCS attr_type.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type)
......@@ -16,7 +18,7 @@ proto_library(op_desc SRCS op_desc.proto DEPS attr_type)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator)
......@@ -30,4 +32,7 @@ add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch
add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net add_op mul_op sigmoid_op softmax_op fc_op)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_test(backward_test SRCS backward_test.cc DEPS backward)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/backward.h"
#include <list>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace framework {
static bool AllInSet(const std::vector<std::string>& names,
const std::string& suffix,
const std::unordered_set<std::string>& set) {
for (auto& name : names) {
if (set.find(name + suffix) == set.end()) {
return false;
}
}
return true;
}
static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<NetOp>();
net_op->type_ = "@NOP@";
net_op->CompleteAddOp();
return net_op;
}
// Get backward operator from a forward operator, recursively implementation.
//
// no_grad_names the gradient variable names without gradient calculating.
//
// uniq_id is a unique index used inside recursively calling BackwardRecursive.
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through
// recursive calling.
//
// returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp.
//
// See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.inputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
return NOP();
}
// All output gradients of forwarding operator do not need to calculate. Then
// all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
for (auto& name : forwardOp.inputs_) {
// Mark all input is not need
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
}
return NOP();
}
// Returned gradient network
auto net = std::make_shared<NetOp>();
if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const NetOp&>(forwardOp);
// Map from output gradient variable name to operator's indices in backward
// net. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0;
// reversely travel forwardNet
for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
++it, ++local_op_id) {
auto fwd = *it;
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
net->AddOp(bwd);
for (auto& out : bwd->outputs_) {
dup_output_ops[out].emplace_back(local_op_id);
}
}
// Get unique ID for this method.
auto uid = uniq_id++;
// TODO(dzh): more comment
using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
std::list<Pos> insert_position;
for (auto& dup_output_op : dup_output_ops) {
const std::string& name = dup_output_op.first;
auto& dup_op = dup_output_op.second;
if (dup_op.size() == 1) continue;
std::vector<std::string> dup_outputs;
for (size_t i = 0; i < dup_op.size(); ++i) {
auto op_offset = dup_op[i];
dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
std::to_string(i));
net->ops_[op_offset]->Rename(name, dup_outputs.back());
}
insert_position.push_back(
{dup_op.back(),
OpRegistry::CreateOp(
"add", {dup_outputs}, {name},
{{"input_format",
std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
}
insert_position.sort(
[](const Pos& l, const Pos& r) { return l.first > r.first; });
for (auto& pos : insert_position) {
net->InsertOp(pos.first + 1, pos.second);
}
} else {
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) {
if (no_grad_names.count(grad_input)) {
std::string prefix = grad_input.substr(
0, grad_input.size() - OperatorBase::GRAD_VAR_SUFFIX().size());
grad_input = prefix + OperatorBase::ZERO_VAR_SUFFIX();
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix},
{grad_input}, {}));
}
}
for (std::string& grad_output : grad_op->outputs_) {
if (no_grad_names.count(grad_output)) {
grad_output = OperatorBase::EMPTY_VAR_NAME();
}
}
if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op;
}
net->AddOp(grad_op);
}
net->type_ = "@GENERATED_BACKWARD@";
net->CompleteAddOp();
return net;
}
// See header for comments
std::shared_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars) {
std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size());
for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
}
size_t uid = 0;
return BackwardRecursive(forwardOp, no_grad_names, uid);
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_set>
#include "operator.h"
namespace paddle {
namespace framework {
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern std::shared_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
} // namespace framework
} // namespace paddle
## Operator/expression 's Backward
### Motivation
In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation lineage, the operator/ expression's Backward feature will generate the backward pass respect to forward pass.
### Implement : gradient operator registry
| | forward operator | backward operator |
| ---------------------- | ---------------- | -------------------------------- |
| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients |
| **Operator::outputs_** | Outputs | InputGradients |
Inputs/Outputs means the input/output of the operator, InputGradients/OutputGradients is the gradient respect to forward opeartor. Forward operator and Backward operator are isomorphic, save their corresponding needs into member attribute.
We use a global hash map record the gradient operators available, follow the philosophy of minimum core, make operator pluggable unit. Each gradient is an operator and it needs to regist itself.
grad_op_builder(fengjiayi)
### Implement : Backward network
given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`,`InputGradients`.
1. bla bla bla (yuyang)
2. NetOp
when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively and ensure them done. During the process, we need to collect the `OutputGradients` name.
We share variable in the same scope, as a result, duplicate operator `OutputGradients` will overwirte then duplicate variable.
![./images/duplicate_op]()
Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator instead.
![./images/duplicate_op2]()
​ Then collect the sub graph OutputGradients/InputGradients as the NetOp's and return it.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/backward.h"
#include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace framework {
class EmptyOp : public OperatorBase {
public:
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
};
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input X of Add").IgnoreGradient();
AddInput("b", "Bias of Add").IgnoreGradient();
AddOutput("Out", "Out of Add").IgnoreGradient();
AddComment("Add Op");
}
};
class MulOpMaker : public OpProtoAndCheckerMaker {
public:
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("A", "A");
AddInput("B", "B");
AddOutput("Out", "Out");
AddComment("Mul");
}
};
class SigmoidOpMaker : public OpProtoAndCheckerMaker {
public:
SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X");
AddOutput("Y", "Y");
AddComment("Sigmoid");
}
};
class NoGradOpMaker : public OpProtoAndCheckerMaker {
public:
NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X input");
AddOutput("Y", "Y output");
AddComment("NoGradOp, same input output. no Grad");
}
};
class FcOp : public NetOp {
public:
void Init() override {
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
{Output("mul_result")}, {}));
auto b_name = Input("b");
std::string before_act = "mul_result";
if (b_name != EMPTY_VAR_NAME()) {
AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name},
{Output("add_result")}, {}));
before_act = "add_result";
} else {
auto out_varname = Output("add_result");
if (out_varname != EMPTY_VAR_NAME()) {
this->Rename(out_varname, EMPTY_VAR_NAME());
}
}
AddOp(OpRegistry::CreateOp("sigmoid", {Output(before_act)}, {Output("Out")},
{}));
CompleteAddOp(false);
}
};
class FcOpMaker : public OpProtoAndCheckerMaker {
public:
FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "x");
AddInput("W", "w");
AddInput("b", "b");
AddOutput("mul_result", "").SetTemporary();
AddOutput("add_result", "").SetTemporary();
AddOutput("Out", "");
AddComment("");
}
};
class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
public:
ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("x", "x");
AddOutput("y", "y");
AddOutput("z", "z");
AddComment("");
}
};
class FillZeroOpMaker : public OpProtoAndCheckerMaker {
public:
FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("x", "x");
AddOutput("out", "out");
AddComment("");
}
};
class AddOpMaker : public OpProtoAndCheckerMaker {
public:
AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "x").SetMultiple();
AddOutput("Y", "y");
AddComment("");
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp);
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker);
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker);
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp);
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(1UL, gop->inputs_.size());
ASSERT_EQ("Out" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]);
ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(),
gop->Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()));
}
TEST(Backward, simple_op_not_need_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
ASSERT_NE(fwd, nullptr);
auto gop = f::Backward(*fwd, {"X"});
ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
"X" + f::OperatorBase::GRAD_VAR_SUFFIX()),
gop->outputs_.end());
auto no_input_gop = f::Backward(*fwd, {"X", "b"});
ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL, std::static_pointer_cast<f::NetOp>(no_input_gop)->ops_.size());
}
TEST(Backward, net_fc_backward_normal) {
std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
"fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString());
ASSERT_EQ(3UL, net->ops_.size());
f::OperatorBase &d_sigmoid = *net->ops_[0];
ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
f::OperatorBase &d_add = *net->ops_[1];
ASSERT_EQ("rowwise_add_grad", d_add.type_);
f::OperatorBase &d_mul = *net->ops_[2];
ASSERT_EQ("mul_grad", d_mul.type_);
}
TEST(Backward, net_fc_backward_not_have_b) {
std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
"fc", {"X", "w", f::OperatorBase::EMPTY_VAR_NAME()},
{"mul_result", "add_result", "tmp"}, {});
ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString());
ASSERT_EQ(2UL, net->ops_.size());
f::OperatorBase &d_sigmoid = *net->ops_[0];
ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
f::OperatorBase &d_mul = *net->ops_[1];
ASSERT_EQ("mul_grad", d_mul.type_);
}
TEST(Backward, net_input_of_network_not_need_grad) {
f::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
{"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
{"mul_tmp_1", "add_tmp_1", "hidden1"}, {}));
net.CompleteAddOp();
auto bwd = Backward(net, {"X"}); // X@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get());
std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
bwd_net->outputs_.begin(), bwd_net->outputs_.end());
all_output.erase(f::OperatorBase::EMPTY_VAR_NAME());
for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
ASSERT_NE(all_output.find(out + f::OperatorBase::GRAD_VAR_SUFFIX()),
all_output.end());
}
// Not Generated X
ASSERT_EQ(all_output.find("X" + f::OperatorBase::GRAD_VAR_SUFFIX()),
all_output.end());
ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<f::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ(
f::OperatorBase::EMPTY_VAR_NAME(),
first_fc_grad->ops_[2]->Output("A" + f::OperatorBase::GRAD_VAR_SUFFIX()));
}
TEST(Backward, net_shared_weight) {
f::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
net.CompleteAddOp();
auto bwd = f::Backward(net, {});
ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size());
ASSERT_EQ("add", bwd_net->ops_[2]->type_);
}
TEST(Backward, op_register_grad_not_for_network) {
auto fwd = f::OpRegistry::CreateOp(
"fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
{{"temporary_index", std::vector<int>{0, 1}}});
ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
}
TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"X", "b"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty());
}
TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"Out"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty());
}
TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get());
ASSERT_EQ(net->ops_.size(), 2UL);
auto &fill_zero = *net->ops_[0];
ASSERT_EQ("fill_zeros_like", fill_zero.type_);
ASSERT_EQ(1UL, fill_zero.inputs_.size());
ASSERT_EQ("Z", fill_zero.inputs_[0]);
ASSERT_EQ(1UL, fill_zero.outputs_.size());
ASSERT_EQ("Z" + f::OperatorBase::ZERO_VAR_SUFFIX(), fill_zero.outputs_[0]);
auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.type_);
ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG
ASSERT_EQ("Z" + f::OperatorBase::ZERO_VAR_SUFFIX(),
d_many_out.Input("z" + f::OperatorBase::GRAD_VAR_SUFFIX()));
ASSERT_EQ("Y" + f::OperatorBase::GRAD_VAR_SUFFIX(),
d_many_out.Input("y" + f::OperatorBase::GRAD_VAR_SUFFIX()));
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(),
d_many_out.Output("x" + f::OperatorBase::GRAD_VAR_SUFFIX()));
}
TEST(Backward, op_part_of_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
auto backward = f::Backward(*fwd, {"a"});
auto &grad_mul = *backward;
ASSERT_EQ(grad_mul.type_, "mul_grad");
ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
ASSERT_EQ(grad_mul.Output("A" + f::OperatorBase::GRAD_VAR_SUFFIX()),
f::OperatorBase::EMPTY_VAR_NAME());
ASSERT_EQ(grad_mul.Output("B" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"b" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_mul.Input("Out" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_mul.Input("A"), "a");
ASSERT_EQ(grad_mul.Input("B"), "b");
ASSERT_EQ(grad_mul.Input("Out"), "out");
}
TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
f::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
{"mul_out1", "add_out1", "out1"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
{"mul_out2", "tmp_out2", "out2"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
{"mul_out3", "tmp_out3", "out3"}, {}));
net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
ASSERT_TRUE(backward->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(backward.get());
ASSERT_EQ(bwd_net->ops_.size(), 3UL);
auto &grad_fc = *bwd_net->ops_[0];
EXPECT_EQ(grad_fc.inputs_.size(),
3UL /* external input number */
+ 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/
- 1UL /*ignoreGradient varable number*/
+ 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add */
+ 1UL /* input number of sigmod */);
EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
/*
EXPECT_EQ(grad_fc.Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()),
f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(grad_fc.Output("W" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"w3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("b" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"b3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("mul_result" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"mul_out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("Out" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("X"), "out2");
EXPECT_EQ(grad_fc.Input("W"), "w3");
EXPECT_EQ(grad_fc.Input("mul_result"), "mul_out3");
EXPECT_EQ(grad_fc.Input("add_result"), "tmp_out3");
EXPECT_EQ(grad_fc.Input("Out"), "out3");
*/
}
......@@ -80,5 +80,21 @@ struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenScalar {
// Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
using Type = Eigen::TensorMap<
Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
using ConstType = Eigen::TensorMap<
Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
static Type From(Tensor& tensor) { return Type(tensor.data<T>()); }
static ConstType From(const Tensor& tensor) {
return ConstType(tensor.data<T>());
}
};
} // namespace framework
} // namespace paddle
......@@ -46,6 +46,17 @@ TEST(Eigen, Tensor) {
}
}
TEST(Eigen, ScalarFrom) {
Tensor t;
int* p = t.mutable_data<int>(make_ddim({1}), platform::CPUPlace());
*p = static_cast<int>(100);
EigenScalar<int>::Type es = EigenScalar<int>::From(t);
ASSERT_EQ(0, es.dimension(0));
ASSERT_EQ(100, es(0));
}
TEST(Eigen, VectorFrom) {
Tensor t;
float* p = t.mutable_data<float>(make_ddim({6}), platform::CPUPlace());
......
......@@ -20,7 +20,7 @@ namespace framework {
OperatorBase* GradOpBuilder::Build() {
BuildOpInOutArgList();
std::string grad_op_type = OpRegistry::grad_ops().at(op_->type_);
std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
CompleteGradOp(grad_op);
......@@ -39,15 +39,15 @@ OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var,
}
void GradOpBuilder::BuildOpInOutArgList() {
const OpProto& op_proto = OpRegistry::protos().at(op_->type_);
const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_->type_));
const OpProto& op_proto = OpRegistry::protos().at(op_.type_);
const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_));
const std::vector<int>& in_format =
op_->attrs_.count("input_format")
? op_->GetAttr<std::vector<int>>("input_format")
op_.attrs_.count("input_format")
? op_.GetAttr<std::vector<int>>("input_format")
: std::vector<int>();
const std::vector<int>& out_format =
op_->attrs_.count("output_format")
? op_->GetAttr<std::vector<int>>("output_format")
op_.attrs_.count("output_format")
? op_.GetAttr<std::vector<int>>("output_format")
: std::vector<int>();
for (const auto& var : op_proto.inputs()) {
arg_list_.emplace_back(
......@@ -70,8 +70,7 @@ void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg,
}
(*varmap)[var_name] = idx++;
size_t pre_sz = in_out.size();
auto base_it =
arg->type_ == IN ? op_->inputs_.begin() : op_->outputs_.begin();
auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin();
std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_,
std::back_inserter(in_out));
if (is_grad) {
......@@ -83,7 +82,7 @@ void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg,
}
void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const {
grad_op->attrs_ = op_->attrs_;
grad_op->attrs_ = op_.attrs_;
grad_op->attrs_.erase("input_format");
grad_op->attrs_.erase("output_format");
VarIndexMap* grad_varmap = new VarIndexMap();
......
......@@ -29,7 +29,7 @@ class GradOpBuilder {
using VarIndexMap = std::unordered_map<std::string, int>;
public:
GradOpBuilder(const OperatorBase* op) : op_(op) {}
GradOpBuilder(const OperatorBase& op) : op_(op) {}
OperatorBase* Build();
private:
......@@ -40,7 +40,7 @@ class GradOpBuilder {
std::vector<int>& format, VarIndexMap* varmap, int& idx,
bool is_grad) const;
void CompleteGradOp(OperatorBase* grad_op) const;
const OperatorBase* op_;
const OperatorBase& op_;
std::vector<std::shared_ptr<OpInOutArg>> arg_list_;
};
......
......@@ -11,7 +11,7 @@ namespace framework {
TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<OperatorBase> add_op(
OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {}));
std::shared_ptr<OperatorBase> grad_add_op = OpRegistry::CreateGradOp(add_op);
std::shared_ptr<OperatorBase> grad_add_op = OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4);
EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2);
EXPECT_EQ(grad_add_op->Input("X"), "x");
......
......@@ -43,7 +43,7 @@ class NetOp : public OperatorBase {
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
*/
void InferShape(const std::shared_ptr<Scope>& scope) const override {
void InferShape(const Scope& scope) const override {
for (auto& op : ops_) {
op->InferShape(scope);
}
......@@ -56,7 +56,7 @@ class NetOp : public OperatorBase {
* scope will be used instead. If no OpContext is provicded, default context
* will be used.
*/
void Run(const std::shared_ptr<Scope>& scope,
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) {
op->Run(scope, dev_ctx);
......@@ -68,9 +68,18 @@ class NetOp : public OperatorBase {
*/
void AddOp(const std::shared_ptr<OperatorBase>& op) {
PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed");
PADDLE_ENFORCE(op != nullptr, "Cannot Insert Null op");
ops_.push_back(op);
}
void InsertOp(size_t pos, const std::shared_ptr<OperatorBase>& op) {
PADDLE_ENFORCE(!add_op_done_,
"Cannot InsertOp when this network is sealed");
PADDLE_ENFORCE(op != nullptr, "Cannot Insert Null op");
PADDLE_ENFORCE(pos <= ops_.size(), "Out of range");
ops_.insert(ops_.begin() + pos, op);
}
void CompleteAddOp(bool calculate = true);
std::string DebugString() const override;
......
......@@ -3,11 +3,6 @@
#include <paddle/framework/op_registry.h>
#include <paddle/framework/operator.h>
USE_OP(add_two);
USE_OP(mul);
USE_OP(sigmoid);
USE_OP(softmax);
namespace paddle {
namespace framework {
......@@ -16,16 +11,22 @@ static int run_cnt = 0;
class TestOp : public OperatorBase {
public:
void InferShape(
const std::shared_ptr<framework::Scope>& scope) const override {
void InferShape(const framework::Scope& scope) const override {
++infer_shape_cnt;
}
void Run(const std::shared_ptr<framework::Scope>& scope,
void Run(const framework::Scope& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {
++run_cnt;
}
};
class EmptyOp : public OperatorBase {
public:
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
};
template <typename T>
void AssertSameVectorWithoutOrder(const std::vector<T>& expected,
const std::vector<T>& actual) {
......@@ -62,7 +63,7 @@ TEST(OpKernel, all) {
ASSERT_EQ(1UL, tmp_idx.size());
ASSERT_EQ("y", net->outputs_[tmp_idx[0]]);
auto scope = std::make_shared<Scope>();
Scope scope;
platform::CPUDeviceContext dev_ctx;
net->InferShape(scope);
......@@ -72,20 +73,17 @@ TEST(OpKernel, all) {
ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet);
}
//! TODO(yuyang18): Refine Backward Op.
// TEST(AddBackwardOp, TestGradOp) {
// auto net = std::make_shared<NetOp>();
// ASSERT_NE(net, nullptr);
// net->AddOp(framework::OpRegistry::CreateOp("mul", {"X", "Y"}, {"Out"}, {}));
// net->AddOp(
// framework::OpRegistry::CreateOp("add_two", {"X", "Y"}, {"Out"}, {}));
// net->AddOp(framework::OpRegistry::CreateOp("add_two", {"X", "Y"}, {""},
// {}));
// auto grad_ops = AddBackwardOp(net);
// for (auto& op : grad_ops->ops_) {
// op->DebugString();
// }
//}
TEST(Net, insert_op) {
NetOp net;
auto op1 = std::make_shared<EmptyOp>();
op1->inputs_ = {"x", "w1", "b1"};
op1->outputs_ = {"y"};
net.AddOp(op1);
net.InsertOp(0, op1);
ASSERT_EQ(2UL, net.ops_.size());
net.InsertOp(2, op1);
ASSERT_EQ(3UL, net.ops_.size());
}
} // namespace framework
} // namespace paddle
......@@ -86,43 +86,46 @@ class OpProtoAndCheckerMaker {
}
protected:
void AddInput(const std::string& name, const std::string& comment,
bool multiple = false, bool ignore_gradient = false) {
struct VariableBuilder {
VarProto* var_;
std::function<void()> on_multiple_;
std::function<void()> on_temporary_;
VariableBuilder& SetMultiple() {
var_->set_multiple(true);
on_multiple_();
return *this;
}
VariableBuilder& SetTemporary() {
PADDLE_ENFORCE(bool(on_temporary_), "Cannot set temporary");
var_->set_temporary(true);
on_temporary_();
return *this;
}
VariableBuilder& IgnoreGradient() {
var_->set_ignore_gradient(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name,
const std::string& comment) {
auto input = proto_->mutable_inputs()->Add();
*input->mutable_name() = name;
*input->mutable_comment() = comment;
input->set_ignore_gradient(ignore_gradient);
input->set_multiple(multiple);
if (multiple) {
SetHasMultipleInput();
}
}
void AddInputs(const std::string& name, const std::string& comment,
bool ignore_gradient = false) {
AddInput(name, comment, true, ignore_gradient);
return VariableBuilder{input, [=] { this->SetHasMultipleInput(); },
nullptr};
}
void AddOutput(const std::string& name, const std::string& comment,
bool temporary = false, bool multiple = false,
bool ignore_gradient = false) {
VariableBuilder AddOutput(const std::string& name,
const std::string& comment) {
auto output = proto_->mutable_outputs()->Add();
*output->mutable_name() = name;
*output->mutable_comment() = comment;
output->set_ignore_gradient(ignore_gradient);
output->set_multiple(multiple);
if (multiple) {
SetHasMultipleOutput();
}
output->set_temporary(temporary);
if (temporary) {
SetHasTemporaryOutput();
}
}
void AddOutputs(const std::string& name, const std::string& comment,
bool temporary = false, bool ignore_gradient = false) {
AddOutput(name, comment, temporary, true, ignore_gradient);
return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); },
[=] { this->SetHasTemporaryOutput(); }};
}
template <typename T>
......@@ -300,9 +303,10 @@ class OpRegistry {
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
static std::shared_ptr<OperatorBase> CreateGradOp(
std::shared_ptr<OperatorBase> op) {
GradOpBuilder builder(op.get());
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops");
GradOpBuilder builder(op);
std::shared_ptr<OperatorBase> grad_op(builder.Build());
grad_op->Init();
return grad_op;
......
......@@ -7,9 +7,9 @@ namespace paddle {
namespace framework {
class CosineOp : public OperatorBase {
public:
void Run(const std::shared_ptr<Scope>& scope,
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
void InferShape(const std::shared_ptr<Scope>& scope) const override {}
void InferShape(const Scope& scope) const override {}
};
class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
......@@ -27,8 +27,8 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase {
public:
void InferShape(const std::shared_ptr<Scope>& scope) const override {}
void Run(const std::shared_ptr<Scope>& scope,
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
};
......@@ -36,9 +36,8 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
MyTestOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInputs("input", "input of cosine op");
AddOutput("output", "output of cosine op",
/*temporary*/ true);
AddInput("input", "input of cosine op").SetMultiple();
AddOutput("output", "output of cosine op").SetTemporary();
auto my_checker = [](int i) {
PADDLE_ENFORCE(i % 2 == 0, "'test_attr' must be even!");
};
......@@ -69,7 +68,7 @@ TEST(OpRegistry, CreateOp) {
std::shared_ptr<paddle::framework::OperatorBase> op =
paddle::framework::OpRegistry::CreateOp(op_desc);
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx;
op->Run(scope, dev_ctx);
float scale_get = op->GetAttr<float>("scale");
......@@ -111,7 +110,7 @@ TEST(OpRegistry, DefaultValue) {
std::shared_ptr<paddle::framework::OperatorBase> op =
paddle::framework::OpRegistry::CreateOp(op_desc);
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx;
op->Run(scope, dev_ctx);
ASSERT_EQ(op->GetAttr<float>("scale"), 1.0);
......@@ -173,7 +172,7 @@ TEST(OpRegistry, CustomChecker) {
SetInputFormat(&op_desc);
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::platform::CPUDeviceContext dev_ctx;
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::Scope scope;
op->Run(scope, dev_ctx);
int test_attr = op->GetAttr<int>("test_attr");
ASSERT_EQ(test_attr, 4);
......
......@@ -20,7 +20,7 @@ namespace paddle {
namespace framework {
template <>
Eigen::DefaultDevice* KernelContext::GetEigenDevice<
Eigen::DefaultDevice* ExecutionContext::GetEigenDevice<
platform::CPUPlace, Eigen::DefaultDevice>() const {
return device_context_.get_eigen_device<Eigen::DefaultDevice>();
}
......@@ -28,7 +28,7 @@ Eigen::DefaultDevice* KernelContext::GetEigenDevice<
#ifndef PADDLE_ONLY_CPU
template <>
Eigen::GpuDevice*
KernelContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
return device_context_.get_eigen_device<Eigen::GpuDevice>();
}
#endif
......@@ -52,7 +52,8 @@ std::vector<std::string> OperatorBase::Inputs(const std::string& name) const {
PADDLE_ENFORCE(in_out_idxs_ != nullptr, "IO Idx could not be nullptr");
auto input_format = GetAttr<std::vector<int>>("input_format");
auto offset = in_out_idxs_->at(name);
PADDLE_ENFORCE(input_format.at((size_t)offset + 1) <= inputs_.size(),
PADDLE_ENFORCE(input_format.at(static_cast<size_t>(offset) + 1) <=
static_cast<int>(inputs_.size()),
"Input Out Of Range");
return std::vector<std::string>{
......@@ -78,7 +79,8 @@ std::vector<std::string> OperatorBase::Outputs(const std::string& name) const {
PADDLE_ENFORCE(in_out_idxs_ != nullptr, "InOut Indice could not be nullptr");
auto output_format = GetAttr<std::vector<int>>("output_format");
auto offset = in_out_idxs_->at(name);
PADDLE_ENFORCE(output_format.at((size_t)offset + 1) <= outputs_.size(),
PADDLE_ENFORCE(output_format.at(static_cast<size_t>(offset) + 1) <=
static_cast<int>(outputs_.size()),
"Output Out of Range");
return std::vector<std::string>{
outputs_.begin() + output_format.at(offset),
......@@ -105,5 +107,11 @@ std::string OperatorBase::DebugString() const {
return ss.str();
}
void OperatorBase::Rename(const std::string& old_name,
const std::string& new_name) {
std::replace(inputs_.begin(), inputs_.end(), old_name, new_name);
std::replace(outputs_.begin(), outputs_.end(), old_name, new_name);
}
} // namespace framework
} // namespace paddle
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
......@@ -31,22 +32,9 @@ limitations under the License. */
namespace paddle {
namespace framework {
template <typename T>
struct EigenDeviceConverter;
template <>
struct EigenDeviceConverter<platform::CPUPlace> {
using EigenDeviceType = Eigen::DefaultDevice;
};
#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
using EigenDeviceType = Eigen::GpuDevice;
};
#endif
class OperatorBase;
class InferShapeContext;
class ExecutionContext;
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
......@@ -67,6 +55,9 @@ class OperatorBase {
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }
/// Variables with this suffix are supposed to be filled up with zeros.
static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }
virtual ~OperatorBase() {}
template <typename T>
......@@ -84,16 +75,20 @@ class OperatorBase {
/// InferShape infer the size of Variables used by this Operator with
/// information inside scope
virtual void InferShape(const std::shared_ptr<Scope>& scope) const = 0;
virtual void InferShape(const Scope& scope) const = 0;
/// Net will call this function to Run an op.
virtual void Run(const std::shared_ptr<Scope>& scope,
virtual void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const = 0;
virtual bool IsNetOp() const { return false; }
/// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name);
//! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables.
//! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Inputs(const std::string& name) const;
......@@ -105,53 +100,156 @@ class OperatorBase {
public:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
// O (Outputs)
// OG (Output Gradients)
std::vector<std::string> inputs_;
// NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients)
std::vector<std::string> outputs_;
AttributeMap attrs_;
// store the arguments' offset described in op_desc.
std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
};
class KernelContext {
class OperatorContext {
public:
KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& device_context)
: op_(*op), scope_(scope), device_context_(device_context) {}
OperatorContext(const OperatorBase* op, const Scope& scope)
: op_(*op), scope_(scope) {}
size_t InputSize() const { return op_.inputs_.size(); }
const Variable* Input(int index) const {
return scope_->GetVariable(op_.inputs_[index]);
size_t OutputSize() const { return op_.outputs_.size(); }
const Variable* InputVar(const size_t index) const {
return scope_.FindVar(op_.inputs_.at(index));
}
Variable* Output(int index) const {
return scope_->GetVariable(op_.outputs_[index]);
Variable* OutputVar(const size_t index) const {
return scope_.FindVar(op_.outputs_.at(index));
}
const Variable* Input(const std::string& name) const {
return scope_->GetVariable(op_.Input(name));
const Variable* InputVar(const std::string& name) const {
return scope_.FindVar(op_.Input(name));
}
const Variable* Output(const std::string& name) const {
return scope_->GetVariable(op_.Output(name));
Variable* OutputVar(const std::string& name) const {
return scope_.FindVar(op_.Output(name));
}
const std::vector<const Variable*> Inputs(const std::string& name) const {
const std::vector<const Variable*> MultiInputVar(
const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const Variable*> res;
res.reserve(names.size());
std::transform(
names.begin(), names.end(), res.begin(),
[this](const std::string& name) { return scope_->GetVariable(name); });
names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) { return scope_.FindVar(name); });
return res;
}
const std::vector<const Variable*> Outputs(const std::string& name) const {
std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const Variable*> res;
res.reserve(names.size());
std::transform(
names.begin(), names.end(), res.begin(),
[this](const std::string& name) { return scope_->GetVariable(name); });
names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) { return scope_.FindVar(name); });
return res;
}
template <typename T>
const T* Input(const size_t index) const {
auto var = InputVar(index);
PADDLE_ENFORCE(var != nullptr, "Input(%d) should not be nullptr", index);
return &var->Get<T>();
}
template <typename T>
T* Output(const size_t index) const {
auto var = OutputVar(index);
PADDLE_ENFORCE(var != nullptr, "Output(%d) should not be nullptr", index);
return var->GetMutable<T>();
}
template <typename T>
const T* Input(const std::string& name) const {
auto var = InputVar(name);
PADDLE_ENFORCE(var != nullptr, "Input(%s) should not be nullptr", name);
return &var->Get<T>();
}
template <typename T>
T* Output(const std::string& name) const {
auto var = OutputVar(name);
PADDLE_ENFORCE(var != nullptr, "Output(%s) should not be nullptr", name);
return var->GetMutable<T>();
}
template <typename T>
const std::vector<const T*> MultiInput(const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
PADDLE_ENFORCE(var != nullptr,
"MultiInput(%s:%s) should not be nullptr",
name, sub_name);
return &var->Get<T>();
});
return res;
}
template <typename T>
std::vector<const T*> MultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
PADDLE_ENFORCE(var != nullptr,
"MultiOutput(%s:%s) should not be nullptr",
name, sub_name);
return var->GetMutable<T>();
});
return res;
}
const OperatorBase& op_;
const Scope& scope_;
};
class InferShapeContext : public OperatorContext {
public:
InferShapeContext(const OperatorBase* op, const Scope& scope)
: OperatorContext(op, scope) {}
};
template <typename T>
struct EigenDeviceConverter;
template <>
struct EigenDeviceConverter<platform::CPUPlace> {
using EigenDeviceType = Eigen::DefaultDevice;
};
#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
using EigenDeviceType = Eigen::GpuDevice;
};
#endif
class ExecutionContext : public OperatorContext {
public:
ExecutionContext(const OperatorBase* op, const Scope& scope,
const platform::DeviceContext& device_context)
: OperatorContext(op, scope), device_context_(device_context) {}
template <typename PlaceType,
typename DeviceType =
typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
......@@ -159,38 +257,23 @@ class KernelContext {
platform::Place GetPlace() const { return device_context_.GetPlace(); }
const OperatorBase& op_;
const std::shared_ptr<Scope>& scope_;
const platform::DeviceContext& device_context_;
};
class OpKernel {
public:
/**
* KernelContext is the only parameter of Kernel Run function.
* ExecutionContext is the only parameter of Kernel Run function.
* Run will get input/output variables, state such as momentum and
* device resource such as CUDA stream, cublas handle, etc. from
* KernelContext. User should construct it before run the Operator.
* ExecutionContext. User should construct it before run the Operator.
*/
virtual void Compute(const KernelContext& context) const = 0;
virtual void Compute(const ExecutionContext& context) const = 0;
virtual ~OpKernel() {}
};
template <typename T>
struct VarToTensor {};
template <>
struct VarToTensor<Tensor*> {
Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};
template <>
struct VarToTensor<const Tensor*> {
const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};
class OperatorWithKernel : public OperatorBase {
public:
struct OpKernelKey {
......@@ -216,10 +299,14 @@ class OperatorWithKernel : public OperatorBase {
using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
void Run(const std::shared_ptr<Scope>& scope,
void InferShape(const Scope& scope) const {
InferShape(InferShapeContext(this, scope));
}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(KernelContext(this, scope, dev_ctx));
opKernel->Compute(ExecutionContext(this, scope, dev_ctx));
}
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
......@@ -228,34 +315,8 @@ class OperatorWithKernel : public OperatorBase {
return g_all_op_kernels;
}
void InferShape(const std::shared_ptr<Scope>& scope) const final {
std::vector<const Tensor*> ins;
VarNamesToTensors(scope, inputs_, &ins);
std::vector<Tensor*> outs;
VarNamesToTensors(scope, outputs_, &outs);
InferShape(ins, outs);
};
private:
template <typename T>
void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
const std::vector<std::string>& var_names,
std::vector<T>* container) const {
container->reserve(var_names.size());
VarToTensor<T> convert;
for (auto& name : var_names) {
auto var = scope->GetVariable(name);
if (var != nullptr) {
container->push_back(convert(var));
} else {
container->push_back(nullptr);
}
}
}
protected:
virtual void InferShape(const std::vector<const Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const = 0;
virtual void InferShape(const InferShapeContext& ctx) const = 0;
};
} // namespace framework
......
......@@ -24,15 +24,15 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
public:
void Init() override { x = 1; }
void InferShape(const std::shared_ptr<Scope>& scope) const override {}
void Run(const std::shared_ptr<Scope>& scope,
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
op_run_num++;
ASSERT_EQ((int)inputs_.size(), 1);
ASSERT_EQ((int)outputs_.size(), 1);
ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr);
ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr);
ASSERT_EQ(x, 1);
ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr);
ASSERT_NE(scope.FindVar(outputs_[0]), nullptr);
}
public:
......@@ -68,11 +68,12 @@ TEST(OperatorBase, all) {
attr->set_f(3.14);
paddle::platform::CPUDeviceContext device_context;
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
scope->CreateVariable("OUT1");
scope.NewVar("OUT1");
ASSERT_EQ(paddle::framework::op_run_num, 0);
op->InferShape(scope);
op->Run(scope, device_context);
ASSERT_EQ(paddle::framework::op_run_num, 1);
}
......@@ -97,14 +98,13 @@ static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {}
void InferShape(const framework::InferShapeContext& ctx) const override {}
};
template <typename T1, typename T2>
class CPUKernelTest : public OpKernel {
public:
void Compute(const KernelContext& ctx) const {
void Compute(const ExecutionContext& ctx) const {
std::cout << "this is cpu kernel" << std::endl;
std::cout << ctx.op_.DebugString() << std::endl;
cpu_kernel_run_num++;
......@@ -117,12 +117,12 @@ class CPUKernelTest : public OpKernel {
class OperatorMultiInputsTest : public OperatorBase {
public:
void Init() override { x = 1; }
void InferShape(const std::shared_ptr<Scope>& scope) const override {}
void Run(const std::shared_ptr<Scope>& scope,
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr);
ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr);
ASSERT_EQ(x, 1);
ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr);
ASSERT_NE(scope.FindVar(outputs_[0]), nullptr);
ASSERT_EQ(Input("x"), "IN1");
ASSERT_EQ(Input("y"), "OUT1");
}
......@@ -137,9 +137,9 @@ class OpKernelTestMultiInputsProtoAndCheckerMaker
OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInputs("xs", "inputs of test op");
AddInput("xs", "inputs of test op").SetMultiple();
AddInput("k", "input of test op");
AddOutputs("ys", "outputs of test op");
AddOutput("ys", "outputs of test op").SetMultiple();
AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0)
.LargerThan(0.0);
......@@ -149,13 +149,31 @@ class OpKernelTestMultiInputsProtoAndCheckerMaker
class CPUKernalMultiInputsTest : public OpKernel {
public:
void Compute(const KernelContext& ctx) const {
void Compute(const ExecutionContext& ctx) const {
auto xs = ctx.op_.Inputs("xs");
ASSERT_EQ(xs.size(), 3UL);
ASSERT_EQ(xs[0], "x0");
ASSERT_EQ(xs[1], "x1");
ASSERT_EQ(xs[2], "x2");
auto inVar0 = ctx.MultiInputVar("xs");
ASSERT_EQ(inVar0.size(), 3);
auto intVar1 = ctx.InputVar("k");
ASSERT_NE(intVar1, nullptr);
auto outVar0 = ctx.MultiOutputVar("ys");
ASSERT_EQ(outVar0.size(), 2);
auto inTensor0 = ctx.MultiInput<Tensor>("xs");
ASSERT_EQ(inTensor0.size(), 3);
auto intTensor1 = ctx.Input<Tensor>("k");
ASSERT_NE(intTensor1, nullptr);
auto outTensor0 = ctx.MultiOutput<Tensor>("ys");
ASSERT_EQ(outTensor0.size(), 2);
auto k = ctx.op_.Input("k");
ASSERT_EQ(k, "k0");
......@@ -186,7 +204,7 @@ TEST(OpKernel, all) {
attr->set_f(3.14);
paddle::platform::CPUDeviceContext cpu_device_context;
auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0);
......@@ -232,7 +250,13 @@ TEST(OpKernel, multi_inputs) {
output_format->Add(2); // y1
paddle::platform::CPUDeviceContext cpu_device_context;
auto scope = std::make_shared<Scope>();
paddle::framework::Scope scope;
scope.NewVar("x0")->GetMutable<Tensor>();
scope.NewVar("x1")->GetMutable<Tensor>();
scope.NewVar("x2")->GetMutable<Tensor>();
scope.NewVar("k0")->GetMutable<Tensor>();
scope.NewVar("y0")->GetMutable<Tensor>();
scope.NewVar("y1")->GetMutable<Tensor>();
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_device_context);
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/scope.h"
#include "paddle/string/printf.h"
namespace paddle {
namespace framework {
Scope::~Scope() {
DropKids();
for (auto& kv : vars_) delete kv.second;
}
Scope& Scope::NewScope() const {
kids_.push_back(new Scope(this));
return *kids_.back();
}
Variable* Scope::NewVar(const std::string& name) {
auto iter = vars_.find(name);
if (iter != vars_.end()) {
return iter->second;
}
Variable* v = new Variable();
vars_[name] = v;
v->name_ = &(vars_.find(name)->first);
return v;
}
Variable* Scope::NewVar() {
return NewVar(string::Sprintf("%p.%d", this, vars_.size()));
}
Variable* Scope::FindVar(const std::string& name) const {
auto it = vars_.find(name);
if (it != vars_.end()) return it->second;
return (parent_ == nullptr) ? nullptr : parent_->FindVar(name);
}
const Scope* Scope::FindScope(const Variable* var) const {
for (auto& kv : vars_) {
if (kv.second == var) {
return this;
}
}
return (parent_ == nullptr) ? nullptr : parent_->FindScope(var);
}
void Scope::DropKids() {
for (Scope* s : kids_) delete s;
kids_.clear();
}
} // namespace framework
} // namespace paddle
......@@ -14,9 +14,9 @@ limitations under the License. */
#pragma once
#include <list>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/framework/variable.h"
......@@ -35,73 +35,42 @@ class Scope;
*/
class Scope {
public:
/**
* @brief Initialize s Scope without parent.
*/
Scope() {}
~Scope();
/**
* @brief Initialize a Scope with parent.
*/
explicit Scope(const std::shared_ptr<Scope>& parent) : parent_(parent) {}
/**
* @brief Create Variable
*
* Create Variable in this Scope. Return the exist one if Variable already
* been created.
*/
Variable* CreateVariable(const std::string& name) {
auto var = GetVariable(name);
if (var) {
return var;
} else {
auto ptr = new Variable();
name_to_var_[name] = std::unique_ptr<Variable>(ptr);
var_to_name_[ptr] = name;
return GetVariable(name);
}
}
/**
* @brief Get Variable.
*
* Get Variable from this Scope, this function will recursive find Variable
* from it's parent scope. Return nullptr if not found.
*/
Variable* GetVariable(const std::string& name) const {
auto it = name_to_var_.find(name);
if (it != name_to_var_.end()) {
return it->second.get();
} else if (parent_ != nullptr) {
return parent_->GetVariable(name);
} else {
return nullptr;
}
}
/**
* @brief If this scope has a Var named name.
*
* Find if there is a Variable in this scope and it's parent scope
*/
bool HasVariable(const std::string& name) const {
return (name_to_var_.find(name) != name_to_var_.end() ||
(parent_ && parent_->HasVariable(name)));
}
std::string GetVariableName(Variable* const var) const {
try {
return var_to_name_.at(var);
} catch (...) {
return "";
}
}
// Disable Copy, Assign, Move.
Scope(const Scope& other) = delete;
Scope& operator=(const Scope& other) = delete;
Scope(Scope&& other) = delete;
/// Create a sub-scope. Returns a reference other than a pointer so
/// to prevent from manual deletion.
/// Mark it to const because that new kid scope cannot change parent scope.
Scope& NewScope() const;
/// Create a variable with given name if it doesn't exist.
Variable* NewVar(const std::string& name);
/// Create a variable with a scope-unique name.
Variable* NewVar();
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.
Variable* FindVar(const std::string& name) const;
/// Find the scope or an ancestor scope that contains the given variable.
const Scope* FindScope(const Variable* var) const;
/// Drop all kids scopes belonged to this scope.
void DropKids();
private:
std::unordered_map<Variable*, std::string> var_to_name_;
std::unordered_map<std::string, std::unique_ptr<Variable>> name_to_var_;
std::shared_ptr<Scope> parent_{nullptr};
// Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const* parent) : parent_(parent) {}
std::unordered_map<std::string, Variable*> vars_;
mutable std::list<Scope*> kids_;
Scope const* parent_{nullptr};
};
} // namespace framework
......
......@@ -15,49 +15,42 @@ limitations under the License. */
#include "paddle/framework/scope.h"
#include "gtest/gtest.h"
TEST(Scope, Create) {
using paddle::framework::Scope;
using paddle::framework::Variable;
using paddle::framework::Scope;
using paddle::framework::Variable;
auto scope = std::make_shared<Scope>();
TEST(Scope, VarsShadowing) {
Scope s;
Scope& ss1 = s.NewScope();
Scope& ss2 = s.NewScope();
Variable* var0 = scope->CreateVariable("");
EXPECT_NE(var0, nullptr);
Variable* v0 = s.NewVar("a");
Variable* v1 = ss1.NewVar("a");
/// GetVariable will return nullptr if not exist.
Variable* var1 = scope->GetVariable("a");
EXPECT_EQ(var1, nullptr);
EXPECT_NE(v0, v1);
/// CreateVariable will return one.
Variable* var2 = scope->CreateVariable("a");
EXPECT_NE(var2, nullptr);
/// Get the created variable.
Variable* var3 = scope->GetVariable("a");
EXPECT_EQ(var2, var3);
EXPECT_EQ(v0, s.FindVar("a"));
EXPECT_EQ(v1, ss1.FindVar("a"));
EXPECT_EQ(v0, ss2.FindVar("a"));
}
/// CreateVariable will just return the variable if it's
/// already exist.
Variable* var4 = scope->CreateVariable("a");
EXPECT_EQ(var4, var2);
TEST(Scope, FindVar) {
Scope s;
Scope& ss = s.NewScope();
EXPECT_EQ("a", scope->GetVariableName(var4));
Scope scope2;
auto var = scope2.CreateVariable("tmp");
EXPECT_EQ("", scope->GetVariableName(var));
}
EXPECT_EQ(nullptr, s.FindVar("a"));
EXPECT_EQ(nullptr, ss.FindVar("a"));
TEST(Scope, Parent) {
using paddle::framework::Scope;
using paddle::framework::Variable;
ss.NewVar("a");
auto parent_scope = std::make_shared<Scope>();
auto scope = std::make_shared<Scope>(parent_scope);
EXPECT_EQ(nullptr, s.FindVar("a"));
EXPECT_NE(nullptr, ss.FindVar("a"));
}
Variable* var0 = parent_scope->CreateVariable("a");
EXPECT_NE(var0, nullptr);
TEST(Scope, FindScope) {
Scope s;
Scope& ss = s.NewScope();
Variable* v = s.NewVar("a");
/// GetVariable will get Variable from parent scope if exist.
Variable* var1 = scope->GetVariable("a");
EXPECT_EQ(var0, var1);
EXPECT_EQ(&s, s.FindScope(v));
EXPECT_EQ(&s, ss.FindScope(v));
}
......@@ -16,7 +16,7 @@
#include <typeindex>
#include <typeinfo>
#include "paddle/platform/assert.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace framework {
......@@ -25,7 +25,7 @@ class Variable {
public:
template <typename T>
const T& Get() const {
PADDLE_ASSERT(IsType<T>());
PADDLE_ENFORCE(IsType<T>(), "Variable must be type %s", typeid(T).name());
return *static_cast<const T*>(holder_->Ptr());
}
......@@ -65,6 +65,17 @@ class Variable {
std::unique_ptr<Placeholder>
holder_; // pointers to a PlaceholderImpl object indeed.
// name_ is only meaningful with a Scope and accessible by it.
//
// NOTE: Please don't expose name_ by adding methods like
// Variable::Name or Scope::VarName! A variable could have a human
// readable name or an auto-generated scope-unique name. In the
// former case, the caller knows the name and doesn't need to access
// the name; in the latter case, the variable should be identified
// by its address but not the unreadable name.
friend class Scope;
const std::string* name_;
};
} // namespace framework
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Projection.h"
namespace paddle {
/**
* SliceProjection can slice the input value into multiple parts,
* and then select some of them to merge into a new output.
*
* First, calculate the slices that need to be merged into the output.
* slices = input.slices().for_output()
*
* Second, merge each slice into the output.
* for(auto slice: slices) {
* out.addAtOffset(slice, offset);
* }
*
* Input slices as output: s0, s1, ...:
* -----------------------
* |///| |//////| |
* |/s0| |//s1//| |
* |///| |//////| |
* -----------------------
* Output, merge s0, s1, ... into one output:
* ----------------
* |///|//////| |
* |/s0|//s1//|...|
* |///|//////| |
* ----------------
*
* The config file api is slice_projection.
*/
class SliceProjection : public Projection {
public:
SliceProjection(const ProjectionConfig& config,
const ParameterPtr& parameter,
bool useGpu);
virtual void forward();
virtual void backward(const UpdateCallback& callback);
protected:
std::vector<std::pair<size_t, size_t>> slices_;
};
REGISTER_PROJECTION(slice, SliceProjection);
/**
* Constructed function.
* @note SliceProjection should not have any parameter.
*/
SliceProjection::SliceProjection(const ProjectionConfig& config,
const ParameterPtr& parameter,
bool useGpu)
: Projection(config, parameter, useGpu) {
CHECK(!parameter) << "'slice' projection should not have any parameter";
slices_.reserve(config.slices_size());
for (const auto& slice : config.slices()) {
slices_.push_back(std::make_pair(slice.start(), slice.end()));
}
}
void SliceProjection::forward() {
size_t offset = 0;
for (auto& slice : slices_) {
auto slice_out = in_->value->subColMatrix(slice.first, slice.second);
out_->value->addAtOffset(*slice_out, offset);
offset += slice_out->getWidth();
}
}
void SliceProjection::backward(const UpdateCallback& callback) {
if (in_->grad) {
size_t offset = 0;
for (auto& slice : slices_) {
auto slice_out = in_->grad->subColMatrix(slice.first, slice.second);
slice_out->addAtOffset(*out_->grad, offset);
offset += slice_out->getWidth();
}
}
}
} // namespace paddle
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=10)
data = data_layer(name ="input", size=8*16*16)
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
proj1 = slice_projection(input=conv1, slices=[(0, 4), (4, 12)])
proj2 = slice_projection(input=conv2, slices=[(1, 5), (5, 15)])
concat = concat_layer(input=[proj1, proj2])
outputs(concat)
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=10)
data = data_layer(name ="input", size=8*16*16)
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
proj1 = slice_projection(input=conv1, slices=[(0, 12)])
proj2 = slice_projection(input=conv2, slices=[(1, 15)])
concat = concat_layer(input=[proj1, proj2])
outputs(concat)
......@@ -152,6 +152,26 @@ TEST(Projection, identity) {
}
}
TEST(Projection, slice) {
ProjectionConfig conf;
conf.set_type("slice");
conf.set_input_size(100);
SliceConfig& slice1 = *conf.add_slices();
slice1.set_start(10);
slice1.set_end(20);
SliceConfig& slice2 = *conf.add_slices();
slice2.set_start(50);
slice2.set_end(70);
conf.set_output_size(30);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 0,
/* batchSize */ 10,
useGpu);
}
}
TEST(Projection, scaling) {
ProjectionConfig conf;
conf.set_type("scaling");
......@@ -920,15 +940,14 @@ TEST(Layer, SequenceLastInstanceLayer) {
}
TEST(Layer, AverageLayer) {
testDegradeLayer(false, "average", "non-seq", -1); // seq average to
non - seq testDegradeLayer(
false,
"average",
"non-seq",
5); // seq average to a shorten seq, stride window = 5
testDegradeLayer(true, "average", "non-seq", -1); // hasSubseq average to
non - seq testDegradeLayer(
true, "average", "seq", -1); // hasSubseq average to seq
testDegradeLayer(false, "average", "non-seq", -1); // seq average to non-seq
testDegradeLayer(false,
"average",
"non-seq",
5); // seq average to a shorten seq, stride window = 5
testDegradeLayer(
true, "average", "non-seq", -1); // hasSubseq average to non-seq
testDegradeLayer(true, "average", "seq", -1); // hasSubseq average to seq
}
TEST(Layer, SequenceConcatLayer) {
......
......@@ -237,6 +237,12 @@ TEST(Compare, concat_table) {
compareNetwork(config_file_a, config_file_b);
}
TEST(Compare, concat_slice) {
std::string config_file_a = "./gserver/tests/concat_slice_a.conf";
std::string config_file_b = "./gserver/tests/concat_slice_b.conf";
compareNetwork(config_file_a, config_file_b);
}
#ifndef PADDLE_ONLY_CPU
TEST(Compare, img_pool) {
std::string config_file_a = "./gserver/tests/img_pool_a.conf";
......
......@@ -1141,4 +1141,64 @@ TEST(CpuMatrix, copyFrom) {
TensorCheckEqual(cpu, copy);
}
void testBatch2seqPadding(int batchSize, int inputDim) {
MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
cpuInput->randomizeUniform();
gpuInput->copyFrom(*cpuInput);
IVectorPtr cpuSequence;
generateSequenceStartPositions(batchSize, cpuSequence);
IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
gpuSequence->copyFrom(*cpuSequence);
size_t numSeq = cpuSequence->getSize() - 1;
size_t maxSeqLen = *std::max_element(cpuSequence->getData(),
cpuSequence->getData() + numSeq);
MatrixPtr cBatch = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);
MatrixPtr gBatch = std::make_shared<GpuMatrix>(numSeq * maxSeqLen, inputDim);
MatrixPtr cCheck = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);
hl_sequence2batch_copy_padding(gBatch->getData(),
gpuInput->getData(),
cpuSequence->getData(),
inputDim,
maxSeqLen,
numSeq,
false,
true);
cCheck->copyFrom(*gBatch);
int* seqStart = cpuSequence->getData();
float* batchData = cBatch->getData();
float* seqData = cpuInput->getData();
for (size_t i = 0; i < maxSeqLen; i++) {
for (size_t j = 0; j < numSeq; j++) {
size_t sequenceStart = seqStart[j];
size_t sequenceLength = seqStart[j + 1] - seqStart[j];
if (i < sequenceLength) {
memcpy(batchData + (i * numSeq + j) * inputDim,
seqData + (sequenceStart + i) * inputDim,
inputDim * sizeof(real));
} else {
memset(batchData + (i * numSeq + j) * inputDim,
0,
inputDim * sizeof(real));
}
}
}
TensorCheckErr(*cBatch, *cCheck);
}
TEST(Matrix, warpCTC) {
for (auto batchSize : {51, 526, 2884}) {
for (auto inputDim : {32, 512, 2026}) {
VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
testBatch2seqPadding(batchSize, inputDim);
}
}
}
#endif
......@@ -44,18 +44,26 @@ endfunction()
op_library(add_op SRCS add_op.cc add_op.cu)
cc_test(add_op_test SRCS add_op_test.cc DEPS add_op)
op_library(mean_op SRCS mean_op.cc mean_op.cu)
cc_test(mean_op_test SRCS mean_op_test.cc DEPS mean_op)
op_library(mul_op SRCS mul_op.cc mul_op.cu)
op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc)
op_library(sigmoid_op SRCS sigmoid_op.cu sigmoid_op.cc)
op_library(sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu)
op_library(softmax_op SRCS softmax_op.cc softmax_op.cu)
op_library(cross_entropy_op SRCS cross_entropy_op.cc cross_entropy_op.cu)
op_library(fc_op SRCS fc_op.cc DEPS mul_op rowwise_add_op sigmoid_op
softmax_op net)
op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu)
op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(recurrent_network_op SRCS recurrent_network_op.cc DEPS op_desc
tensor op_registry operator net)
cc_test(recurrent_network_op_test SRCS recurrent_network_op_test.cc DEPS
recurrent_network_op gtest mul_op add_op)
op_library(fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net)
op_library(recurrent_network_op
SRCS recurrent_network_op.cc
DEPS op_desc tensor net)
cc_test(recurrent_network_op_test
SRCS recurrent_network_op_test.cc
DEPS recurrent_network_op mul_op add_op)
......@@ -19,16 +19,16 @@ namespace operators {
class AddOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 2, "Input size of AddOp must be two");
PADDLE_ENFORCE(outputs.size() == 1, "Output size of AddOp must be one");
PADDLE_ENFORCE(
inputs[0] != nullptr && inputs[1] != nullptr && outputs[0] != nullptr,
"Inputs/Outputs of AddOp must all be set");
PADDLE_ENFORCE(inputs[0]->dims() == inputs[1]->dims(),
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "Input size of AddOp must be two");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of AddOp must be one");
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr && ctx.InputVar(1) != nullptr,
"Inputs of AddOp must all be set");
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
"Outputs of AddOp must all be set");
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims() == ctx.Input<Tensor>(1)->dims(),
"Two input of Add Op's dimension must be same.");
outputs[0]->Resize(inputs[0]->dims());
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
}
};
......@@ -49,8 +49,7 @@ The equation is: Out = X + Y
class AddOpGrad : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {}
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "AddOpGrad";
return "";
......
......@@ -21,16 +21,17 @@ namespace operators {
template <typename Place, typename T>
class AddKernel : public OpKernel {
public:
void Compute(const KernelContext& context) const override {
auto input0 = context.Input(0)->Get<Tensor>();
auto input1 = context.Input(1)->Get<Tensor>();
auto output = context.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& context) const override {
auto input0 = context.Input<Tensor>(0);
auto input1 = context.Input<Tensor>(1);
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace());
EigenVector<T>::Flatten(*output).device(
*(context.GetEigenDevice<Place>())) =
EigenVector<T>::Flatten(input0) + EigenVector<T>::Flatten(input1);
framework::EigenVector<T>::Flatten(*input0) +
framework::EigenVector<T>::Flatten(*input1);
}
};
......
......@@ -19,20 +19,20 @@ namespace operators {
class OnehotCrossEntropyOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 2,
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2,
"Input size of OnehotCrossEntropyOp must be two");
PADDLE_ENFORCE(outputs.size() == 1,
PADDLE_ENFORCE(ctx.OutputSize() == 1,
"Output size of OnehotCrossEntropyOp must be one");
PADDLE_ENFORCE(inputs[0] != nullptr && inputs[1] != nullptr,
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr && ctx.InputVar(1) != nullptr,
"Inputs of OnehotCrossEntropyOp must all be set");
PADDLE_ENFORCE(outputs[0] != nullptr,
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
"Outputs of OnehotCrossEntropyOp must all be set");
PADDLE_ENFORCE(inputs[0]->dims().size() == 2, "X's dimension must be 2.");
PADDLE_ENFORCE(outputs[0]->dims().size() == 1,
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims().size() == 2,
"X's dimension must be 2.");
PADDLE_ENFORCE(ctx.Output<Tensor>(0)->dims().size() == 1,
"label's dimension must be 1.");
outputs[0]->Resize({inputs[0]->dims()[0]});
ctx.Output<Tensor>(0)->Resize({ctx.Input<Tensor>(0)->dims()[0]});
}
};
......
......@@ -23,18 +23,18 @@ class OnehotCrossEntropyOpKernel : public OpKernel {
public:
constexpr T LOG_THRESHOLD() const { return static_cast<T>(1e-20); }
void Compute(const KernelContext& context) const override {
auto X = context.Input(0)->Get<Tensor>();
const T* X_data = X.data<T>();
const int* label_data = context.Input(1)->Get<Tensor>().data<int>();
auto* Y = context.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& ctx) const override {
auto X = ctx.Input<Tensor>(0);
const T* X_data = X->data<T>();
const int* label_data = ctx.Input<Tensor>(1)->data<int>();
auto Y = ctx.Output<Tensor>(0);
Y->mutable_data<T>(context.GetPlace());
Y->mutable_data<T>(ctx.GetPlace());
T* Y_data = Y->data<T>();
int batch_size = X.dims()[0];
int class_num = X.dims()[1];
int batch_size = X->dims()[0];
int class_num = X->dims()[1];
// Y[i] = -log(X[i][j])
for (int i = 0; i < batch_size; ++i) {
......
......@@ -50,8 +50,8 @@ public:
AddInput("b", "the bias of fc operator");
AddOutput("Y", "the output of fc operator");
AddOutput(
"before_act", "the before activation output of fc operator", true);
AddOutput("before_act", "the before activation output of fc operator")
.SetTemporary();
AddAttr<std::string>("activation", "The activation key for fc layer")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "softmax"});
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/fill_zeros_like_op.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor.h"
namespace paddle {
namespace operators {
class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1UL,
"Input size of FillZerosLikeOp must be one.");
PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Output size of AddOp must be one.");
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr,
"Input of FillZerosLikeOp must be set.");
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
"Output of FillZerosLikeOp must be set.");
ctx.Output<framework::Tensor>(0)->Resize(
ctx.Input<framework::Tensor>(0)->dims());
}
};
class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FillZerosLikeOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Src", "The input of fill-zeros-like op.");
AddOutput("Dst", "The varibale will be filled up with zeros.");
AddComment(R"DOC(
Fill up a vriable with zeros.
The output will have the same size with input.
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP(fill_zeros_like,
paddle::operators::FillZerosLikeOp,
paddle::operators::FillZerosLikeOpMaker);
REGISTER_OP_CPU_KERNEL(
fill_zeros_like,
paddle::operators::FillZerosLikeKernel<paddle::platform::CPUPlace, float>);
#include "paddle/framework/op_registry.h"
#include "paddle/operators/fill_zeros_like_op.h"
REGISTER_OP_GPU_KERNEL(
fill_zeros_like,
paddle::operators::FillZerosLikeKernel<paddle::platform::GPUPlace, float>);
\ No newline at end of file
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "glog/logging.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class FillZerosLikeKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* output = context.Output<framework::Tensor>(0);
output->mutable_data<T>(context.GetPlace());
framework::EigenVector<T>::Flatten(*output).setZero();
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/mean_op.h"
namespace paddle {
namespace operators {
class MeanOp : public OperatorWithKernel {
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Input size of AddOp must be one");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of AddOp must be one");
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr && ctx.OutputVar(0) != nullptr,
"Input/Output of MeanOp must be initialized.");
ctx.Output<Tensor>(0)->Resize(framework::make_ddim({1}));
}
};
class MeanOpMaker : public OpProtoAndCheckerMaker {
public:
MeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op");
AddComment("Mean Operator");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker);
REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel<ops::CPUPlace, float>);
#define EIGEN_USE_GPU
#include "paddle/operators/mean_op.h"
REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/type_alias.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class MeanKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0);
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace());
EigenScalar<T>::From(*output).device(*(context.GetEigenDevice<Place>())) =
EigenVector<T>::Flatten(*input).mean();
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/framework/op_registry.h>
USE_OP(mean);
TEST(MeanOp, GetOpProto) {
auto& protos = paddle::framework::OpRegistry::protos();
auto it = protos.find("mean");
ASSERT_NE(it, protos.end());
}
......@@ -19,18 +19,17 @@ namespace operators {
class MulOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 2, "The mul op must take two inputs");
auto dim0 = inputs[0]->dims();
auto dim1 = inputs[1]->dims();
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "The mul op must take two inputs");
auto dim0 = ctx.Input<Tensor>(0)->dims();
auto dim1 = ctx.Input<Tensor>(1)->dims();
PADDLE_ENFORCE(dim0.size() == 2 && dim1.size() == 2,
"The input of mul op must be matrix");
PADDLE_ENFORCE(
dim0[1] == dim1[0],
"First matrix's width must be equal with second matrix's height.");
PADDLE_ENFORCE(outputs.size() == 1, "The mul op must take one output");
outputs[0]->Resize({dim0[0], dim1[1]});
PADDLE_ENFORCE(ctx.OutputSize() == 1, "The mul op must take one output");
ctx.Output<Tensor>(0)->Resize({dim0[0], dim1[1]});
}
};
......@@ -51,8 +50,7 @@ The equation is: Out = X * Y
class MulOpGrad : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {}
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "MulGrad";
return "";
......
......@@ -22,19 +22,17 @@ namespace operators {
template <typename Place, typename T>
class MulKernel : public OpKernel {
public:
void Compute(const KernelContext& context) const override {
void Compute(const ExecutionContext& context) const override {
Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = {
{Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}};
auto input0 = context.Input(0)->Get<Tensor>();
auto input1 = context.Input(1)->Get<Tensor>();
auto* output = context.Output(0)->GetMutable<Tensor>();
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace());
EigenMatrix<T>::From(*output).device(*(context.GetEigenDevice<Place>())) =
EigenMatrix<T>::From(input0).contract(EigenMatrix<T>::From(input1),
dim_pair);
EigenMatrix<T>::From(*context.Input<Tensor>("X"))
.contract(EigenMatrix<T>::From(*context.Input<Tensor>("Y")),
dim_pair);
}
};
} // namespace operators
......
......@@ -27,38 +27,37 @@ namespace operators {
namespace rnn {
void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks,
const size_t seq_len) {
PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
for (size_t i = 0; i < inlinks.size(); ++i) {
Tensor* input =
step_scopes[0]->GetVariable(inlinks[i].external)->GetMutable<Tensor>();
step_scopes[0]->FindVar(inlinks[i].external)->GetMutable<Tensor>();
DDim dims = input->dims();
PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
"all the inlinks must have same length");
DDim step_dims = slice_ddim(dims, 1, dims.size());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_input = step_scopes[j]
->CreateVariable(inlinks[i].internal)
->GetMutable<Tensor>();
Tensor* step_input =
step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable<Tensor>();
*step_input = input->Slice<float>(j, j + 1);
step_input->Resize(step_dims);
}
}
}
void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& outlinks,
const size_t seq_len) {
for (size_t i = 0; i < outlinks.size(); i++) {
Tensor* output =
step_scopes[0]->GetVariable(outlinks[i].external)->GetMutable<Tensor>();
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>();
// TODO(qingiqng) remove following code after adding
// InferShape in RecurrentGradientOp
DDim step_dims = step_scopes[0]
->GetVariable(outlinks[i].internal)
->FindVar(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
......@@ -66,9 +65,8 @@ void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
output->mutable_data<float>(make_ddim(dims_vec), platform::CPUPlace());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_output = step_scopes[j]
->GetVariable(outlinks[i].internal)
->GetMutable<Tensor>();
Tensor* step_output =
step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable<Tensor>();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(output->Slice<float>(j, j + 1))
......@@ -77,7 +75,7 @@ void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
}
}
void LinkMemories(std::vector<std::shared_ptr<Scope>>& scopes,
void LinkMemories(const std::vector<Scope*>& scopes,
const std::vector<rnn::MemoryAttr>& memories,
size_t step_id,
int offset) {
......@@ -94,17 +92,17 @@ void LinkMemories(std::vector<std::shared_ptr<Scope>>& scopes,
offset,
scopes.size(),
step_id);
std::shared_ptr<Scope> scope = scopes[step_id];
std::shared_ptr<Scope> linked_scope = scopes[step_id + offset];
auto scope = scopes[step_id];
auto linked_scope = scopes[step_id + offset];
for (auto& attr : memories) {
auto mem = scope->CreateVariable(attr.pre_var)->GetMutable<Tensor>();
auto mem = scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
// maybe share variable is better?
auto linked_mem = linked_scope->GetVariable(attr.var)->GetMutable<Tensor>();
auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>();
mem->ShareDataWith<float>(*linked_mem);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
auto m = scope->CreateVariable(attr.var)->GetMutable<Tensor>();
auto m = scope->NewVar(attr.var)->GetMutable<Tensor>();
// for unit test, as addOp and mulOp are null currently, if not
// mutable_data, mem.data() in output will be error. We will
// remove this line after merge the correct addOp and mulOp.
......@@ -171,8 +169,8 @@ void InitArgument(const ArgumentName& name,
} // namespace rnn
void RecurrentAlgorithm::InferShape(const std::shared_ptr<Scope>& scope) const {
seq_len_ = scope->GetVariable((arg_->inlinks[0]).external)
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->dims()[0];
CreateScopes(scope);
......@@ -187,10 +185,10 @@ void RecurrentAlgorithm::InferShape(const std::shared_ptr<Scope>& scope) const {
InitMemories(step_scopes[0]);
PADDLE_ENFORCE(scope->HasVariable(arg_->step_net),
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr,
"stepnet [%s] is not in scope.",
arg_->step_net);
Variable* net = scope->GetVariable(arg_->step_net);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
// If the InferShape is called in OperatorBase's run function,
// the rnn op only needs to do InferShape for the first time step
......@@ -198,82 +196,79 @@ void RecurrentAlgorithm::InferShape(const std::shared_ptr<Scope>& scope) const {
if (i > 0) {
rnn::LinkMemories(step_scopes, arg_->memories, i, -1);
}
net->GetMutable<NetOp>()->InferShape(step_scopes[i]);
net->GetMutable<NetOp>()->InferShape(*step_scopes[i]);
}
auto outlinks = arg_->outlinks;
for (size_t i = 0; i < outlinks.size(); i++) {
DDim step_dims = step_scopes[0]
->GetVariable(outlinks[i].internal)
->FindVar(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
// now only support fixed length
dims_vec.insert(dims_vec.begin(), seq_len_);
Tensor* output =
step_scopes[0]->GetVariable(outlinks[i].external)->GetMutable<Tensor>();
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>();
output->Resize(make_ddim(dims_vec));
}
}
void RecurrentAlgorithm::Run(const std::shared_ptr<Scope>& scope,
void RecurrentAlgorithm::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
Variable* net = scope->GetVariable(arg_->step_net);
Variable* net = scope.FindVar(arg_->step_net);
for (size_t step_id = 0; step_id < seq_len_; step_id++) {
// the link memory is done in InferShape
// maybe remove following code after testing
if (step_id > 0) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1);
}
net->GetMutable<NetOp>()->Run(step_scopes[step_id], dev_ctx);
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
}
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_);
}
void RecurrentAlgorithm::CreateScopes(std::shared_ptr<Scope> scope) const {
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// TODO(xxx) Only two scopes are needed for inference, this case will be
// supported later.
auto step_scopes = scope->GetVariable(arg_->step_scopes)
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
auto step_scopes =
scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
std::shared_ptr<Scope> step_scope = std::make_shared<Scope>(scope);
auto& step_scope = scope.NewScope();
// Now all variables in scope must be created outside of op.
auto net_op = scope->GetVariable(arg_->step_net)->GetMutable<NetOp>();
auto net_op = scope.FindVar(arg_->step_net)->GetMutable<NetOp>();
for (auto& input : net_op->inputs_) {
step_scope->CreateVariable(input);
if (!step_scope.FindVar(input)) step_scope.NewVar(input);
}
for (auto& output : net_op->outputs_) {
step_scope->CreateVariable(output);
step_scope.NewVar(output);
}
step_scopes->push_back(std::make_shared<Scope>(step_scope));
step_scopes->emplace_back(&step_scope);
}
}
}
void RecurrentAlgorithm::InitMemories(std::shared_ptr<Scope> step_scope) const {
void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
for (auto& attr : arg_->memories) {
Tensor* pre_mem =
step_scope->CreateVariable(attr.pre_var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->HasVariable(attr.boot_var),
Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists",
attr.var,
attr.boot_var);
Tensor* boot_mem =
step_scope->GetVariable(attr.boot_var)->GetMutable<Tensor>();
Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
pre_mem->ShareDataWith<float>(*boot_mem);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
// here for unit test
auto cur_step_mem =
step_scope->CreateVariable(attr.var)->GetMutable<Tensor>();
auto cur_step_mem = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
cur_step_mem->mutable_data<float>(boot_mem->dims(), platform::CPUPlace());
}
}
......@@ -312,13 +307,14 @@ public:
: OpProtoAndCheckerMaker(proto, op_checker) {
const auto& name = RecurrentOp::kArgName;
// inputs and outputs stored in proto
AddInputs(name.inlinks,
"the input that need to be segmented for each step.");
AddInputs(name.boot_memories, "variables to initialize memories.");
AddInput(name.inlinks, "the input that need to be segmented for each step.")
.SetMultiple();
AddInput(name.boot_memories, "variables to initialize memories.")
.SetMultiple();
AddInput(name.step_net, "network shared by all steps.");
AddOutputs(name.outlinks,
"the output that need to concated for all steps.");
AddOutput(name.outlinks, "the output that need to concated for all steps.")
.SetMultiple();
AddOutput(name.step_scopes, "step scopes");
// Attributes stored in AttributeMap
......@@ -333,72 +329,69 @@ public:
};
void RecurrentGradientAlgorithm::Run(
const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const {
const Scope& scope, const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_);
PADDLE_ENFORCE(scope->HasVariable(arg_->step_net),
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr,
"step net is not in scope.");
Variable* net = scope->GetVariable(arg_->step_net);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1);
}
net->GetMutable<NetOp>()->Run(step_scopes[step_id], dev_ctx);
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
}
LinkBootMemoryGradients(step_scopes[0]);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_);
}
void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
std::shared_ptr<Scope> step_scope) const {
Scope* step_scope) const {
for (auto& attr : arg_->memories) {
Tensor* mem_grad =
step_scope->CreateVariable(attr.var)->GetMutable<Tensor>();
Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
PADDLE_ENFORCE(mem_grad != nullptr,
"boot_tensor should be retrieved before");
PADDLE_ENFORCE(step_scope->HasVariable(attr.boot_var),
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists",
attr.var,
attr.boot_var);
Tensor* boot_mem_grad =
step_scope->CreateVariable(attr.boot_var)->GetMutable<Tensor>();
step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
boot_mem_grad->ShareDataWith<float>(*mem_grad);
}
}
void RecurrentGradientAlgorithm::InferShape(
const std::shared_ptr<Scope>& scope) const {
seq_len_ = scope->GetVariable((arg_->inlinks[0]).external)
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->dims()[0];
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_);
PADDLE_ENFORCE(scope->HasVariable(arg_->step_net),
PADDLE_ENFORCE(scope.FindVar(arg_->step_net) != nullptr,
"step net is not in scope.");
Variable* net = scope->GetVariable(arg_->step_net);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1);
}
net->GetMutable<NetOp>()->InferShape(step_scopes[step_id]);
net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]);
}
auto outlinks = arg_->outlinks;
for (size_t i = 0; i < outlinks.size(); i++) {
DDim step_dims = step_scopes[0]
->GetVariable(outlinks[i].internal)
->FindVar(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
// now only support fixed length
dims_vec.insert(dims_vec.begin(), seq_len_);
Tensor* output =
step_scopes[0]->GetVariable(outlinks[i].external)->GetMutable<Tensor>();
step_scopes[0]->FindVar(outlinks[i].external)->GetMutable<Tensor>();
output->Resize(make_ddim(dims_vec));
}
LinkBootMemoryGradients(step_scopes[0]);
......
......@@ -70,18 +70,18 @@ struct ArgumentName {
/**
* Prepare inputs for each step net.
*/
void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks,
const size_t seq_len);
/**
* Process outputs of step nets and merge to variables.
*/
void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& outlinks,
const size_t seq_len);
void LinkMemories(std::vector<std::shared_ptr<Scope>>& step_scopes,
void LinkMemories(const std::vector<Scope*>& step_scopes,
const std::vector<MemoryAttr>& memories,
size_t step_id,
int offset);
......@@ -100,15 +100,14 @@ void InitArgument(const ArgumentName& name, Argument* arg);
class RecurrentAlgorithm {
public:
void Run(const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const;
void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const;
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }
/**
* InferShape must be called before Run.
*/
void InferShape(const std::shared_ptr<Scope>& scope) const;
void InferShape(const Scope& scope) const;
protected:
/*
......@@ -117,15 +116,13 @@ protected:
* NOTE the scopes are reused in both the forward and backward, so just
* create once and expand its size if more steps need.
*/
void CreateScopes(std::shared_ptr<Scope> scope) const;
void CreateScopes(const Scope& scope) const;
inline const std::vector<std::shared_ptr<Scope>>& GetStepScopes(
std::shared_ptr<Scope> scope) const {
return *(scope->GetVariable(arg_->step_scopes))
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
const std::vector<Scope*>& GetStepScopes(const Scope& scope) const {
return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
}
void InitMemories(std::shared_ptr<Scope> step_scopes) const;
void InitMemories(Scope* step_scopes) const;
private:
std::unique_ptr<rnn::Argument> arg_;
......@@ -146,21 +143,18 @@ class RecurrentGradientAlgorithm {
public:
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }
void Run(const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const;
void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const;
void LinkBootMemoryGradients(std::shared_ptr<Scope> step_scopes) const;
void LinkBootMemoryGradients(Scope* step_scopes) const;
/**
* InferShape must be called before Run.
*/
void InferShape(const std::shared_ptr<Scope>& scope) const;
void InferShape(const Scope& scope) const;
protected:
inline const std::vector<std::shared_ptr<Scope>>& GetStepScopes(
std::shared_ptr<Scope> scope) const {
return *(scope->GetVariable(arg_->step_scopes))
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
inline const std::vector<Scope*>& GetStepScopes(const Scope& scope) const {
return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
}
private:
......@@ -175,11 +169,11 @@ public:
/**
* InferShape must be called before Run.
*/
virtual void InferShape(const std::shared_ptr<Scope>& scope) const override {
virtual void InferShape(const Scope& scope) const override {
alg_.InferShape(scope);
}
virtual void Run(const std::shared_ptr<Scope>& scope,
virtual void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
alg_.Run(scope, dev_ctx);
}
......@@ -197,11 +191,11 @@ public:
/**
* InferShape must be called before Run.
*/
virtual void InferShape(const std::shared_ptr<Scope>& scope) const override {
virtual void InferShape(const Scope& scope) const override {
alg_.InferShape(scope);
}
virtual void Run(const std::shared_ptr<Scope>& scope,
virtual void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
alg_.Run(scope, dev_ctx);
}
......
......@@ -34,41 +34,40 @@ protected:
virtual void TearDown() override {}
void CreateGlobalVariables() {
scope_ = std::make_shared<Scope>();
// create input, and init content
LOG(INFO) << "create global variable x";
for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
Variable* x = scope_->CreateVariable(inlink);
Variable* x = scope_.NewVar(inlink);
DDim dims = make_ddim(std::vector<int>{
10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
}
// create output alias just for test
for (auto inlink : std::vector<std::string>{"h@alias"}) {
Variable* x = scope_->CreateVariable(inlink);
Variable* x = scope_.NewVar(inlink);
DDim dims =
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
}
LOG(INFO) << "create global variable w";
Variable* w = scope_->CreateVariable("rnn/w");
Variable* w = scope_.NewVar("rnn/w");
w->GetMutable<Tensor>()->mutable_data<float>(
make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
for (auto boot : std::vector<std::string>{"x_boot", "h_boot"}) {
LOG(INFO) << "create global variable " << boot;
Variable* h_boot = scope_->CreateVariable(boot);
Variable* h_boot = scope_.NewVar(boot);
h_boot->GetMutable<Tensor>()->mutable_data<float>(
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
platform::CPUPlace());
}
LOG(INFO) << "create variable step_scopes";
scope_->CreateVariable("step_scopes");
scope_.NewVar("step_scopes");
LOG(INFO) << "create variable h";
scope_->CreateVariable("h");
scope_.NewVar("h");
}
void CreateRNNOp() {
......@@ -150,7 +149,7 @@ protected:
void CreateStepNet() {
LOG(INFO) << "create variable step_net";
Variable* var = scope_->CreateVariable("step_net");
Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>();
// rnn/s is net's input or output?
net->inputs_ = {"rnn/h@pre", "rnn/w", "rnn/x"};
......@@ -164,7 +163,7 @@ protected:
}
// father scope
std::shared_ptr<Scope> scope_;
Scope scope_;
std::shared_ptr<OperatorBase> rnn_op_;
};
......@@ -191,68 +190,64 @@ protected:
virtual void TearDown() override {}
void CreateGlobalVariables() {
scope_ = std::make_shared<Scope>();
// inputs: x
LOG(INFO) << "create global variable x";
Variable* x = scope_->CreateVariable("x");
Variable* x = scope_.NewVar("x");
DDim dims =
make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
// inputs: h_boot
LOG(INFO) << "create global variable h_boot";
Variable* h_boot = scope_->CreateVariable("h_boot");
Variable* h_boot = scope_.NewVar("h_boot");
h_boot->GetMutable<Tensor>()->mutable_data<float>(
make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
// inputs: w
LOG(INFO) << "create global variable w";
Variable* w = scope_->CreateVariable("rnn/w");
Variable* w = scope_.NewVar("rnn/w");
w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
platform::CPUPlace());
// inputs: h_grad
LOG(INFO) << "create variable h_grad";
Variable* dh = scope_->CreateVariable("h_grad");
Variable* dh = scope_.NewVar("h_grad");
dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
platform::CPUPlace());
// inputs: step_scopes
LOG(INFO) << "create variable step_scopes";
scope_->CreateVariable("step_scopes");
scope_.NewVar("step_scopes");
// inputs: step_net
LOG(INFO) << "create variable step_net";
scope_->CreateVariable("step_net");
scope_.NewVar("step_net");
// outputs: w_grad
LOG(INFO) << "create global variable w_grad";
scope_->CreateVariable("rnn/w_grad");
scope_.NewVar("rnn/w_grad");
// outputs: x_grad
LOG(INFO) << "create global variable x_grad";
scope_->CreateVariable("x_grad");
scope_.NewVar("x_grad");
// outputs: h_boot_grad
LOG(INFO) << "create global variable h_boot_grad";
scope_->CreateVariable("h_boot_grad");
scope_.NewVar("h_boot_grad");
}
void CreateStepScopes() {
std::vector<std::shared_ptr<Scope>>* step_scopes =
scope_->GetVariable("step_scopes")
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 0; i < 10; ++i) {
auto scope = std::make_shared<Scope>(scope_);
auto pre_t = scope->CreateVariable("rnn/pre_h")->GetMutable<Tensor>();
pre_t->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
auto tensor = scope->CreateVariable("rnn/h")->GetMutable<Tensor>();
tensor->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
auto& scope = scope_.NewScope();
auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
// for unit test of ConcatOutputs
auto xg = scope->CreateVariable("rnn/x_grad")->GetMutable<Tensor>();
xg->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
xg->mutable_data<float>({20, 30}, platform::CPUPlace());
step_scopes->push_back(scope);
step_scopes->emplace_back(&scope);
}
// last time step
auto g = (*step_scopes)[9]
->CreateVariable("rnn/h_pre_grad")
->GetMutable<Tensor>();
g->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
g->mutable_data<float>({20, 30}, platform::CPUPlace());
}
void CreateRNNGradientAlgorithm() {
......@@ -280,7 +275,7 @@ protected:
void CreateStepNet() {
LOG(INFO) << "create variable step_net";
Variable* var = scope_->CreateVariable("step_net");
Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>();
net->AddOp(OpRegistry::CreateOp("mul",
{"rnn/h_pre", "rnn/w", "rnn/s_grad"},
......@@ -300,9 +295,8 @@ protected:
rnn::Link inlink;
inlink.external = "x";
inlink.internal = "rnn/x";
std::vector<std::shared_ptr<Scope>>* step_scopes =
scope_->GetVariable("step_scopes")
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10);
}
......@@ -314,15 +308,14 @@ protected:
mem_attr.boot_var = "boot_h";
std::vector<rnn::MemoryAttr> memories;
memories.push_back(mem_attr);
std::vector<std::shared_ptr<Scope>>* step_scopes =
scope_->GetVariable("step_scopes")
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 1; i < 10; ++i) {
rnn::LinkMemories(*step_scopes, memories, i, -1);
}
}
std::shared_ptr<Scope> scope_;
Scope scope_;
RecurrentGradientAlgorithm rnn_grad_algo_;
};
......@@ -341,14 +334,14 @@ TEST(RecurrentOp, LinkMemories) {
// create and init step scopes
int len = 10;
std::vector<std::shared_ptr<Scope>> step_scopes;
std::vector<Scope*> step_scopes;
for (int i = 0; i < len; ++i) {
auto scope = std::make_shared<Scope>();
scope->CreateVariable("pre_h");
auto tensor = scope->CreateVariable("h")->GetMutable<Tensor>();
float* data = tensor->mutable_data<float>(make_ddim({15, 20}), CPUPlace());
for (int i = 0; i < 15 * 20; ++i) {
data[i] = rand() * (1. / (double)RAND_MAX);
auto scope = new Scope();
scope->NewVar("pre_h");
auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
for (int j = 0; j < 15 * 20; ++j) {
data[j] = rand() * (1. / (double)RAND_MAX);
}
step_scopes.push_back(scope);
}
......@@ -367,9 +360,9 @@ TEST(RecurrentOp, LinkMemories) {
// check
for (int i = 0; i < len - 1; ++i) {
const float* a =
step_scopes[i]->GetVariable("h")->GetMutable<Tensor>()->data<float>();
step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
const float* b = step_scopes[i + 1]
->GetVariable("pre_h")
->FindVar("pre_h")
->GetMutable<Tensor>()
->data<float>();
for (size_t i = 0; i < 15 * 20; ++i) {
......@@ -382,19 +375,25 @@ TEST(RecurrentOp, LinkMemories) {
}
// check
for (int i = len - 2; i >= 0; --i) {
const float* a = step_scopes[i]
->GetVariable("pre_h")
->GetMutable<Tensor>()
->data<float>();
const float* b = step_scopes[i + 1]
->GetVariable("h")
->GetMutable<Tensor>()
->data<float>();
const float* a =
step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
const float* b =
step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
for (size_t i = 0; i < 15 * 20; ++i) {
ASSERT_FLOAT_EQ(a[i], b[i]);
}
}
for (auto s : step_scopes) {
delete s;
}
}
USE_OP(add_two);
USE_OP(mul);
// int main() {
// //! TODO(yuyang18): Temporary disable this unit-test because implementation
// //! error.
// return 0;
//}
\ No newline at end of file
......@@ -18,17 +18,17 @@ namespace operators {
class RowWiseAddOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 2UL, "Two inputs is needed by rowwise add");
auto dim0 = inputs[0]->dims();
auto dim1 = inputs[1]->dims();
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2UL,
"Two inputs is needed by rowwise add");
auto dim0 = ctx.Input<Tensor>(0)->dims();
auto dim1 = ctx.Input<Tensor>(1)->dims();
PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
PADDLE_ENFORCE(outputs.size() == 1, "The output size must be 1");
outputs[0]->Resize(inputs[0]->dims());
PADDLE_ENFORCE(ctx.OutputSize() == 1, "The output size must be 1");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
}
};
......
......@@ -21,14 +21,12 @@ namespace operators {
template <typename Place, typename T>
class RowWiseAddKernel : public OpKernel {
public:
void Compute(const KernelContext& context) const override {
auto in0 = context.Input(0)->Get<Tensor>();
auto in1 = context.Input(1)->Get<Tensor>();
auto* out = context.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& context) const override {
auto out = context.Output<Tensor>(0);
out->mutable_data<T>(context.GetPlace());
auto input = EigenMatrix<T>::From(in0);
auto bias = EigenVector<T>::From(in1);
auto input = EigenMatrix<T>::From(*context.Input<Tensor>(0));
auto bias = EigenVector<T>::From(*context.Input<Tensor>(1));
auto output = EigenMatrix<T>::From(*out);
const int bias_size = bias.dimension(0);
......
......@@ -19,16 +19,15 @@ namespace operators {
class SGDOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 2, "Input size of SGDOp must be two");
PADDLE_ENFORCE(outputs.size() == 1, "Output size of SGDOp must be one");
PADDLE_ENFORCE(inputs[0] != nullptr, "inputs[0] mast be set");
PADDLE_ENFORCE(inputs[1] != nullptr, "inputs[1] mast be set");
PADDLE_ENFORCE(outputs[0] != nullptr, "outputs[0] mast be set");
PADDLE_ENFORCE(inputs[0]->dims() == inputs[1]->dims(),
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "Input size of SGDOp must be two");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of SGDOp must be one");
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr, "inputs[0] mast be set");
PADDLE_ENFORCE(ctx.InputVar(1) != nullptr, "inputs[1] mast be set");
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr, "outputs[0] mast be set");
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims() == ctx.Input<Tensor>(1)->dims(),
"Two input of SGD Op's dimension must be same.");
outputs[0]->Resize(inputs[0]->dims());
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
}
};
......
......@@ -21,16 +21,16 @@ namespace operators {
template <typename Place, typename T>
class SGDOpKernel : public OpKernel {
public:
void Compute(const KernelContext& ctx) const override {
auto param = ctx.Input("param")->Get<Tensor>();
auto grad = ctx.Input("grad")->Get<Tensor>();
auto* param_out = ctx.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& ctx) const override {
auto param = ctx.Input<Tensor>("param");
auto grad = ctx.Input<Tensor>("grad");
auto param_out = ctx.Output<Tensor>(0);
float lr = ctx.op_.GetAttr<float>("learning_rate");
param_out->mutable_data<T>(ctx.GetPlace());
EigenVector<T>::Flatten(*param_out).device(*(ctx.GetEigenDevice<Place>())) =
EigenVector<T>::Flatten(param) - lr * EigenVector<T>::Flatten(grad);
EigenVector<T>::Flatten(*param) - lr * EigenVector<T>::Flatten(*grad);
}
};
......
......@@ -18,11 +18,10 @@ namespace operators {
class SigmoidOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 1, "Sigmoid Op only have one input");
PADDLE_ENFORCE(outputs.size() == 1, "Sigmoid Op only have one output");
outputs[0]->Resize(inputs[0]->dims());
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Sigmoid Op only have one input");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Sigmoid Op only have one output");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
}
};
......@@ -38,8 +37,7 @@ public:
class SigmoidOpGrad : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {}
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "SigmoidGrad";
return "";
......
......@@ -22,15 +22,14 @@ namespace operators {
template <typename Place, typename T>
class SigmoidKernel : public OpKernel {
public:
void Compute(const KernelContext& context) const override {
auto input = context.Input(0)->Get<Tensor>();
auto* output = context.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0);
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace());
EigenVector<T>::Flatten(*output).device(
*(context.GetEigenDevice<Place>())) =
1.0 / (1.0 + (-1.0 * EigenVector<T>::Flatten(input)).exp());
1.0 / (1.0 + (-1.0 * EigenVector<T>::Flatten(*input)).exp());
}
};
} // namespace operators
......
......@@ -18,14 +18,13 @@ namespace operators {
class SoftmaxOp : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 1, "Only one input is need for softmax");
PADDLE_ENFORCE(inputs[0]->dims().size() == 2,
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Only one input is need for softmax");
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims().size() == 2,
"The input of softmax op must be matrix");
PADDLE_ENFORCE(outputs.size() == 1, "Only one output is need for softmax");
outputs[0]->Resize(inputs[0]->dims());
PADDLE_ENFORCE(ctx.OutputSize() == 1,
"Only one output is need for softmax");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
}
};
......@@ -41,8 +40,7 @@ public:
class SoftmaxOpGrad : public OperatorWithKernel {
protected:
void InferShape(const std::vector<const Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {}
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "SoftmaxOpGrad";
return "";
......
......@@ -22,12 +22,12 @@ namespace operators {
template <typename Place, typename T>
class SoftmaxKernel : public OpKernel {
public:
void Compute(const KernelContext& context) const override {
auto input = context.Input(0)->Get<Tensor>();
auto* output = context.Output(0)->GetMutable<Tensor>();
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0);
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace());
auto logits = EigenMatrix<T>::From(input);
auto logits = EigenMatrix<T>::From(*input);
auto softmax = EigenMatrix<T>::From(*output);
const int kBatchDim = 0;
......
......@@ -22,7 +22,13 @@ namespace paddle {
namespace operators {
using OpKernel = framework::OpKernel;
using KernelContext = framework::KernelContext;
using InferShapeContext = framework::InferShapeContext;
using ExecutionContext = framework::ExecutionContext;
using Variable = framework::Variable;
template <typename T,
int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename T,
int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
......
......@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <execinfo.h>
#include <paddle/string/printf.h>
#include <iomanip>
#include <sstream>
#include <stdexcept>
#include <string>
......@@ -39,12 +41,22 @@ namespace platform {
struct EnforceNotMet : public std::exception {
std::exception_ptr exp_;
std::string err_str_;
EnforceNotMet(std::exception_ptr e, const char* f, int l) : exp_(e) {
static constexpr int TRACE_STACK_LIMIT = 100;
try {
std::rethrow_exception(exp_);
} catch (const std::exception& exp) {
err_str_ = string::Sprintf("%s at [%s:%d]", exp.what(), f, l);
std::ostringstream sout;
sout << string::Sprintf("%s at [%s:%d]", exp.what(), f, l) << std::endl;
sout << "Call Stacks: " << std::endl;
void* call_stack[TRACE_STACK_LIMIT];
int sz = backtrace(call_stack, TRACE_STACK_LIMIT);
auto line = backtrace_symbols(call_stack, sz);
for (int i = 0; i < sz; ++i) {
sout << line[i] << std::endl;
}
free(line);
err_str_ = sout.str();
}
}
......
cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python
add_op fc_op sgd_op cross_entropy_op recurrent_network_op)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_network_op)
......@@ -33,6 +33,7 @@ USE_OP(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc);
USE_OP(sgd);
USE_OP(mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
......@@ -102,15 +103,18 @@ All parameter, weight, gradient are variables in Paddle.
},
py::return_value_policy::reference);
py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
.def(py::init<const std::shared_ptr<pd::Scope>&>())
.def("get_var",
&pd::Scope::GetVariable,
py::class_<pd::Scope>(m, "Scope", "")
.def("new_var",
[](pd::Scope& self, const std::string& name) -> pd::Variable* {
return self.NewVar(name);
},
py::return_value_policy::reference)
.def("create_var",
&pd::Scope::CreateVariable,
.def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>())
.def("new_scope",
[](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
py::return_value_policy::reference)
.def("get_var_name", &pd::Scope::GetVariableName);
.def("drop_kids", &pd::Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
......
......@@ -198,6 +198,11 @@ message RowConvConfig {
required uint32 context_length = 1;
}
message SliceConfig {
required uint32 start = 1;
required uint32 end = 2;
}
message ProjectionConfig {
required string type = 1;
required string name = 2;
......@@ -218,6 +223,10 @@ message ProjectionConfig {
// For pool
optional PoolConfig pool_conf = 12;
// For slice
// Each slice output is the input[start, end)
repeated SliceConfig slices = 13;
}
message OperatorConfig {
......
......@@ -565,6 +565,35 @@ class IdentityOffsetProjection(Projection):
return []
@config_class
class SliceProjection(Projection):
type = 'slice'
def __init__(self, input_layer_name, slices, **xargs):
super(SliceProjection, self).__init__(input_layer_name, **xargs)
input = g_layer_map[input_layer_name]
if input.type in ["exconv", "cudnn_conv"]:
# the slice operator is for the channel dimension
assert input.num_filters is not None
channels = input.num_filters
image_size = input.size / channels
assert slices[len(slices) - 1][1] <= channels
for i in xrange(len(slices)):
slice = self.proj_conf.slices.add()
slice.start = slices[i][0] * image_size
slice.end = slices[i][1] * image_size
self.size += slice.end - slice.start
else:
config_assert(False,
'Currently the input should be convolution layer')
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
......
......@@ -129,6 +129,7 @@ __all__ = [
'gated_unit_layer',
'crop_layer',
'sub_nested_seq_layer',
'slice_projection',
]
......@@ -538,6 +539,45 @@ def identity_projection(input, offset=None, size=None):
return proj
def slice_projection(input, slices):
"""
slice_projection can slice the input value into multiple parts,
and then select some of them to merge into a new output.
.. math::
output = [input.slices()]
The example usage is:
.. code-block:: python
proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])
Note that slice_projection should not have any parameter.
:param input: Input Layer.
:type input: LayerOutput
:param slices: An array of slice parameters.
Each slice contains the start and end offsets based
on the input.
:type slices: pair of int
:return: A SliceProjection object
:rtype: SliceProjection
"""
assert len(slices) >= 1
start = 0
for i in xrange(len(slices)):
assert len(slices[i]) == 2
# The start position of the next slice needs to be greater than
# or equal to the end position of the previous slice.
assert slices[i][0] >= start
assert slices[i][1] >= slices[i][0]
start = slices[i][1]
proj = SliceProjection(input_layer_name=input.name, slices=slices)
proj.origin = input
return proj
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
"""
......@@ -6014,7 +6054,7 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
@layer_support()
def sub_nested_seq_layer(input, name=None, top_k=1):
"""
The sub_nest_seq_layer accepts two inputs: the first one is a nested
The sub_nested_seq_layer accepts two inputs: the first one is a nested
sequence in PaddlePaddle; the second one is a learnable score or
distribution over each sequence in the nested sequence.
......@@ -6025,7 +6065,7 @@ def sub_nested_seq_layer(input, name=None, top_k=1):
.. code-block:: python
prob = fc_layer(input=data, size=1, act=SequenceSoftmaxActivation())
sub_nest_seq = sub_nest_seq_layer(input=[data, prob], top_k=3)
sub_nest_seq = sub_nested_seq_layer(input=[data, prob], top_k=3)
:param input: The two input layers. The first input must be a nested
sequence. The second input is a learnable scores, whose size must be 1.
......
......@@ -5,7 +5,7 @@ Default scope function.
thread-local stack of Scope. Top of that stack is current scope, the bottom
of that stack is all scopes' parent.
Invoking `create_var/get_var` can `create/get` variable in current scope.
Invoking `new_var/find_var` can `new/find` variable in current scope.
Invoking `enter_local_scope/leave_local_scope` can create or destroy local
scope.
......@@ -19,8 +19,8 @@ import threading
__tl_scope__ = threading.local()
__all__ = [
'get_cur_scope', 'enter_local_scope', 'leave_local_scope', 'create_var',
'get_var', 'scoped_function'
'get_cur_scope', 'enter_local_scope', 'leave_local_scope', 'new_var',
'find_var', 'scoped_function'
]
......@@ -33,7 +33,7 @@ def get_cur_scope():
if cur_scope_stack is None:
__tl_scope__.cur_scope = list()
if len(__tl_scope__.cur_scope) == 0:
__tl_scope__.cur_scope.append(paddle.v2.framework.core.Scope(None))
__tl_scope__.cur_scope.append(paddle.v2.framework.core.Scope())
return __tl_scope__.cur_scope[-1]
......@@ -42,7 +42,7 @@ def enter_local_scope():
Enter a new local scope
"""
cur_scope = get_cur_scope()
new_scope = paddle.v2.framework.core.Scope(cur_scope)
new_scope = cur_scope.new_scope()
__tl_scope__.cur_scope.append(new_scope)
......@@ -51,20 +51,21 @@ def leave_local_scope():
Leave local scope
"""
__tl_scope__.cur_scope.pop()
get_cur_scope().drop_kids()
def create_var(name):
def new_var(name):
"""
create variable in current scope.
"""
return get_cur_scope().create_var(name)
return get_cur_scope().new_var(name)
def get_var(name):
def find_var(name):
"""
get variable in current scope.
"""
return get_cur_scope().get_var(name)
return get_cur_scope().find_var(name)
def scoped_function(func):
......
import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
from default_scope_funcs import create_var, get_var, get_cur_scope
from default_scope_funcs import new_var, find_var, get_cur_scope
__all__ = ['Network'] # Only expose Network
......@@ -29,12 +29,15 @@ class NetworkFunctor(object):
if ipt in kwargs:
var = kwargs[ipt]
if isinstance(var, basestring):
var = create_var(var)
tmp = new_var(var)
self.net.var_names[tmp] = var
var = tmp
if not isinstance(var, core.Variable):
raise TypeError(
"Input of op creation must be string or variable")
kwargs[ipt] = get_cur_scope().get_var_name(var)
kwargs[ipt] = self.net.var_names[var]
notemp_outputs = self.func.all_not_temp_output_args
......@@ -49,17 +52,20 @@ class NetworkFunctor(object):
if opt in kwargs:
var = kwargs[opt]
if isinstance(var, basestring):
var = create_var(var)
tmp = new_var(var)
self.net.var_names[tmp] = var
var = tmp
if not isinstance(var, core.Variable):
raise TypeError(
"Output of op creation must be string or variable")
kwargs[opt] = get_cur_scope().get_var_name(var)
kwargs[opt] = self.net.var_names[var]
op = self.func(**kwargs)
self.net.net.add_op(op)
lst = [get_var(kwargs[opt]) for opt in notemp_outputs]
lst = [find_var(kwargs[opt]) for opt in notemp_outputs]
if len(lst) == 1:
return lst[0]
elif len(lst) == 0:
......@@ -89,6 +95,7 @@ class Network(object):
self.net = core.Net.create()
funcs = (func_name for func_name in dir(op_creations)
if not func_name.startswith("__"))
self.var_names = dict()
# TODO(yuyang18): This code can work, but do not generate a good
# docstring, try to give a better way generate function in runtime
......
......@@ -10,6 +10,7 @@ add_python_test(test_framework
test_sgd_op.py
test_cross_entropy_op.py
test_mul_op.py
test_mean_op.py
test_sigmoid_op.py
test_softmax_op.py
test_rowwise_add_op.py
......
......@@ -24,13 +24,13 @@ class OpTestMeta(type):
func = getattr(creation.op_creations, self.type, None)
self.assertIsNotNone(func)
scope = core.Scope(None)
scope = core.Scope()
kwargs = dict()
for in_name in func.all_input_args:
if hasattr(self, in_name):
kwargs[in_name] = in_name
var = scope.create_var(in_name).get_tensor()
var = scope.new_var(in_name).get_tensor()
arr = getattr(self, in_name)
var.set_dims(arr.shape)
var.set(arr)
......@@ -40,7 +40,7 @@ class OpTestMeta(type):
for out_name in func.all_output_args:
if hasattr(self, out_name):
kwargs[out_name] = out_name
scope.create_var(out_name).get_tensor()
scope.new_var(out_name).get_tensor()
for attr_name in func.all_attr_args:
if hasattr(self, attr_name):
......@@ -54,7 +54,7 @@ class OpTestMeta(type):
op.run(scope, ctx)
for out_name in func.all_output_args:
actual = numpy.array(scope.get_var(out_name).get_tensor())
actual = numpy.array(scope.find_var(out_name).get_tensor())
expect = getattr(self, out_name)
# TODO(qijun) The default decimal is 7, but numpy.dot and eigen.mul
# has some diff, and could not pass unittest. So I set decimal 3 here.
......
......@@ -7,19 +7,19 @@ class TestDefaultScopeFuncs(unittest.TestCase):
self.assertIsNotNone(get_cur_scope())
def test_none_variable(self):
self.assertIsNone(get_var("test"))
self.assertIsNone(find_var("test"))
def test_create_var_get_var(self):
var_a = create_var("var_a")
var_a = new_var("var_a")
self.assertIsNotNone(var_a)
self.assertIsNotNone(get_cur_scope().get_var('var_a'))
self.assertIsNotNone(get_cur_scope().find_var('var_a'))
enter_local_scope()
self.assertIsNotNone(get_cur_scope().get_var('var_a'))
self.assertIsNotNone(get_cur_scope().find_var('var_a'))
leave_local_scope()
def test_var_get_int(self):
def __new_scope__():
i = create_var("var_i")
i = new_var("var_i")
self.assertFalse(i.is_int())
i.set_int(10)
self.assertTrue(i.is_int())
......
......@@ -6,13 +6,13 @@ import paddle.v2.framework.create_op_creation_methods as creation
class TestFc(unittest.TestCase):
def test_fc(self):
scope = core.Scope(None)
x = scope.create_var("X")
scope = core.Scope()
x = scope.new_var("X")
x_tensor = x.get_tensor()
x_tensor.set_dims([1000, 784])
x_tensor.alloc_float()
w = scope.create_var("W")
w = scope.new_var("W")
w_tensor = w.get_tensor()
w_tensor.set_dims([784, 100])
w_tensor.alloc_float()
......@@ -25,10 +25,10 @@ class TestFc(unittest.TestCase):
op = creation.op_creations.fc(X="X", Y="Y", W="W")
for out in op.outputs():
if scope.get_var(out) is None:
scope.create_var(out).get_tensor()
if scope.find_var(out) is None:
scope.new_var(out).get_tensor()
tensor = scope.get_var("Y").get_tensor()
tensor = scope.find_var("Y").get_tensor()
op.infer_shape(scope)
self.assertEqual([1000, 100], tensor.shape())
......
import unittest
from op_test_util import OpTestMeta
import numpy as np
class TestMeanOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "mean"
self.X = np.random.random((32, 784)).astype("float32")
self.Out = np.mean(self.X)
if __name__ == '__main__':
unittest.main()
......@@ -5,29 +5,29 @@ import unittest
class TestScope(unittest.TestCase):
def test_create_destroy(self):
paddle_c = paddle.v2.framework.core
scope = paddle_c.Scope(None)
scope = paddle_c.Scope()
self.assertIsNotNone(scope)
scope_with_parent = paddle_c.Scope(scope)
scope_with_parent = scope.new_scope()
self.assertIsNotNone(scope_with_parent)
def test_none_variable(self):
paddle_c = paddle.v2.framework.core
scope = paddle_c.Scope(None)
self.assertIsNone(scope.get_var("test"))
scope = paddle_c.Scope()
self.assertIsNone(scope.find_var("test"))
def test_create_var_get_var(self):
paddle_c = paddle.v2.framework.core
scope = paddle_c.Scope(None)
var_a = scope.create_var("var_a")
scope = paddle_c.Scope()
var_a = scope.new_var("var_a")
self.assertIsNotNone(var_a)
self.assertIsNotNone(scope.get_var('var_a'))
scope2 = paddle_c.Scope(scope)
self.assertIsNotNone(scope2.get_var('var_a'))
self.assertIsNotNone(scope.find_var('var_a'))
scope2 = scope.new_scope()
self.assertIsNotNone(scope2.find_var('var_a'))
def test_var_get_int(self):
paddle_c = paddle.v2.framework.core
scope = paddle_c.Scope(None)
var = scope.create_var("test_int")
scope = paddle_c.Scope()
var = scope.new_var("test_int")
var.set_int(10)
self.assertTrue(var.is_int())
self.assertEqual(10, var.get_int())
......
......@@ -5,8 +5,8 @@ import numpy
class TestScope(unittest.TestCase):
def test_int_tensor(self):
scope = core.Scope(None)
var = scope.create_var("test_tensor")
scope = core.Scope()
var = scope.new_var("test_tensor")
tensor = var.get_tensor()
tensor.set_dims([1000, 784])
......@@ -23,8 +23,8 @@ class TestScope(unittest.TestCase):
self.assertEqual(2.0, tensor_array_2[19, 11])
def test_float_tensor(self):
scope = core.Scope(None)
var = scope.create_var("test_tensor")
scope = core.Scope()
var = scope.new_var("test_tensor")
tensor = var.get_tensor()
tensor.set_dims([1000, 784])
......
......@@ -76,3 +76,6 @@ class client(object):
# Memory created from C should be freed.
get_c_lib().mem_free(ret.contents)
return record, 0
def paddle_start_get_records(self, pass_id):
get_c_lib().paddle_start_get_records(self.c, pass_id)
......@@ -16,7 +16,7 @@ Creator package contains some simple reader creator, which could
be used in user program.
"""
__all__ = ['np_array', 'text_file', "recordio"]
__all__ = ['np_array', 'text_file', "cloud_reader"]
def np_array(x):
......@@ -81,35 +81,41 @@ def recordio_local(paths, buf_size=100):
return dec.buffered(reader, buf_size)
def recordio(paths, buf_size=100):
pass_num = 0
def cloud_reader(paths, etcd_endpoints, timeout_sec=5, buf_size=64):
"""
Creates a data reader that outputs record one one by one
from given local or cloud recordio path.
Create a data reader that yield a record one by one from
the paths:
:path: path of recordio files.
:etcd_endpoints: the endpoints for etcd cluster
:returns: data reader of recordio files.
.. code-block:: python
from paddle.v2.reader.creator import cloud_reader
etcd_endpoints = "http://127.0.0.1:2379"
trainer.train.(
reader=cloud_reader(["/work/dataset/uci_housing/uci_housing*"], etcd_endpoints),
)
"""
import os
import paddle.v2.master.client as cloud
if "KUBERNETES_SERVICE_HOST" not in os.environ.keys():
return recordio_local(paths)
host_name = "MASTER_SERVICE_HOST"
if host_name not in os.environ.keys():
raise Exception('not find ' + host_name + ' in environment variable.')
addr = os.environ(host)
import cPickle as pickle
import paddle.v2.master as master
c = master.client(etcd_endpoints, timeout_sec, buf_size)
c.set_dataset(paths)
def reader():
c = cloud(addr, buf_size)
c.set_dataset(paths)
global pass_num
c.paddle_start_get_records(pass_num)
pass_num += 1
while True:
r, err = client.next_record()
if err < 0:
r, e = c.next_record()
if not r:
if e != -2:
print "get record error: ", e
break
yield r
c.release()
yield pickle.loads(r)
return reader
......@@ -34,14 +34,5 @@ class TestTextFile(unittest.TestCase):
self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1))
class TestRecordIO(unittest.TestCase):
def test_recordio(self):
path = os.path.join(
os.path.dirname(__file__), "test_recordio_creator.dat")
reader = paddle.v2.reader.creator.recordio([path])
for idx, r in enumerate(reader()):
self.assertSequenceEqual(r, str(idx))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册