Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4b39f92b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4b39f92b
编写于
7月 31, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add implementation of SubNestedSequenceLayer.
上级
c0ecd5c4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
365 addition
and
37 deletion
+365
-37
paddle/gserver/layers/SubNestedSequenceLayer.cpp
paddle/gserver/layers/SubNestedSequenceLayer.cpp
+179
-0
paddle/gserver/tests/LayerGradUtil.cpp
paddle/gserver/tests/LayerGradUtil.cpp
+13
-1
paddle/gserver/tests/LayerGradUtil.h
paddle/gserver/tests/LayerGradUtil.h
+4
-1
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+71
-8
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+98
-27
未找到文件。
paddle/gserver/layers/SubNestedSequenceLayer.cpp
0 → 100644
浏览文件 @
4b39f92b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
class
SubNestedSequenceLayer
:
public
Layer
{
public:
explicit
SubNestedSequenceLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
private:
void
checkInputs
(
const
Argument
&
inputSeq
,
const
Argument
&
seqScores
);
void
calSelectedCols
(
const
Argument
&
scores
,
const
int
*
subSeqStartPos
,
size_t
topK
);
void
partialSortIndex
(
const
std
::
vector
<
real
>&
values
,
int
k
,
std
::
vector
<
size_t
>&
indices
);
void
buildOutputSeqInfo
();
std
::
vector
<
int
>
outSeqStartInfo_
;
std
::
vector
<
int
>
outSubSeqStartInfo_
;
MatrixPtr
scoreOverInputSeq_
;
// rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr
rowIndice_
;
std
::
vector
<
int
>
selectedRows_
;
};
REGISTER_LAYER
(
sub_nested_seq
,
SubNestedSequenceLayer
);
bool
SubNestedSequenceLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
2U
,
inputLayers_
.
size
());
setNeedSequenceInfo
(
false
);
return
true
;
}
void
SubNestedSequenceLayer
::
checkInputs
(
const
Argument
&
inputSeq
,
const
Argument
&
seqScores
)
{
CHECK
(
inputSeq
.
hasSubseq
())
<<
"The first input of SubNestSequence layer "
<<
"must be a nested sequence."
;
CHECK
(
seqScores
.
hasSeq
())
<<
"The second input of SubNestSequence layer must be a sequence."
;
CHECK_EQ
(
seqScores
.
value
->
getWidth
(),
1U
)
<<
"The second input of SubNestedSequenceLayer is scores "
<<
"over each sequence in a nested sequence, "
<<
"so its size should be 1."
;
CHECK_EQ
(
inputSeq
.
getNumSubSequences
(),
seqScores
.
value
->
getHeight
())
<<
"The second input of SubNestedSequenceLayer is scores "
<<
"over each sequence in a nested sequence, so its height should be "
<<
"equal to number of sequence in the first input."
;
}
void
SubNestedSequenceLayer
::
partialSortIndex
(
const
std
::
vector
<
real
>&
values
,
int
k
,
std
::
vector
<
size_t
>&
indices
)
{
CHECK_GE
(
values
.
size
(),
k
);
indices
.
resize
(
values
.
size
(),
0
);
std
::
iota
(
begin
(
indices
),
end
(
indices
),
0U
);
std
::
partial_sort
(
begin
(
indices
),
begin
(
indices
)
+
k
,
end
(
indices
),
[
&
](
size_t
a
,
size_t
b
)
{
return
values
[
a
]
>
values
[
b
];
});
}
void
SubNestedSequenceLayer
::
calSelectedCols
(
const
Argument
&
scores
,
const
int
*
subSeqStartPos
,
size_t
topK
)
{
selectedRows_
.
clear
();
outSubSeqStartInfo_
.
resize
(
1
,
0
);
outSeqStartInfo_
.
resize
(
1
,
0
);
real
*
seqScores
=
nullptr
;
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
scoreOverInputSeq_
,
scores
.
value
->
getHeight
(),
scores
.
value
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
scoreOverInputSeq_
->
copyFrom
(
*
scores
.
value
);
seqScores
=
scoreOverInputSeq_
->
getData
();
}
else
{
seqScores
=
scores
.
value
->
getData
();
}
int
*
scoreSeqStartPos
=
scores
.
sequenceStartPositions
->
getMutableData
(
false
);
for
(
int
i
=
0
;
i
<
scores
.
getNumSequences
();
++
i
)
{
int
seqLen
=
scoreSeqStartPos
[
i
+
1
]
-
scoreSeqStartPos
[
i
];
int
selectedSeqNum
=
std
::
min
(
static_cast
<
int
>
(
config_
.
top_k
()),
seqLen
);
std
::
vector
<
size_t
>
sortedIdx
;
partialSortIndex
(
std
::
vector
<
real
>
(
seqScores
+
scoreSeqStartPos
[
i
],
seqScores
+
scoreSeqStartPos
[
i
+
1
]),
selectedSeqNum
,
sortedIdx
);
for
(
int
j
=
0
;
j
<
selectedSeqNum
;
++
j
)
{
int
begPos
=
subSeqStartPos
[
scoreSeqStartPos
[
i
]
+
sortedIdx
[
j
]];
int
endPos
=
subSeqStartPos
[
scoreSeqStartPos
[
i
]
+
sortedIdx
[
j
]
+
1
];
for
(
int
m
=
begPos
;
m
<
endPos
;
++
m
)
selectedRows_
.
push_back
(
m
);
outSubSeqStartInfo_
.
push_back
(
outSubSeqStartInfo_
.
back
()
+
endPos
-
begPos
);
}
outSeqStartInfo_
.
push_back
(
outSubSeqStartInfo_
.
back
());
}
}
void
SubNestedSequenceLayer
::
buildOutputSeqInfo
()
{
Argument
&
output
=
getOutput
();
ICpuGpuVector
::
resizeOrCreate
(
output
.
sequenceStartPositions
,
outSeqStartInfo_
.
size
(),
false
);
output
.
sequenceStartPositions
->
copyFrom
(
outSeqStartInfo_
.
data
(),
outSeqStartInfo_
.
size
(),
false
);
ICpuGpuVector
::
resizeOrCreate
(
output
.
subSequenceStartPositions
,
outSubSeqStartInfo_
.
size
(),
false
);
output
.
subSequenceStartPositions
->
copyFrom
(
outSubSeqStartInfo_
.
data
(),
outSubSeqStartInfo_
.
size
(),
false
);
}
void
SubNestedSequenceLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
Argument
&
inputSeq
=
getInput
(
0
);
const
Argument
&
seqScores
=
getInput
(
1
);
checkInputs
(
inputSeq
,
seqScores
);
calSelectedCols
(
seqScores
,
inputSeq
.
subSequenceStartPositions
->
getMutableData
(
false
),
config_
.
top_k
());
resetOutput
(
selectedRows_
.
size
(),
getSize
());
buildOutputSeqInfo
();
if
(
useGpu_
)
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
size
(),
useGpu_
);
rowIndice_
->
copyFrom
(
selectedRows_
.
data
(),
selectedRows_
.
size
());
}
else
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
data
(),
selectedRows_
.
size
(),
useGpu_
);
}
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
}
void
SubNestedSequenceLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
MatrixPtr
inputGrad1
=
getInputGrad
(
0
);
MatrixPtr
outputGrad
=
getOutputGrad
();
if
(
inputGrad1
)
outputGrad
->
addToRows
(
*
inputGrad1
,
*
rowIndice_
);
}
}
// namespace paddle
paddle/gserver/tests/LayerGradUtil.cpp
浏览文件 @
4b39f92b
...
...
@@ -400,7 +400,6 @@ void initDataLayer(TestConfig testConf,
const
std
::
vector
<
int
>&
labelSeqStartPositions
=
testConf
.
inputDefs
[
i
].
labelSeqStartPositions
;
if
(
labelSeqStartPositions
.
size
()
!=
0
)
{
CHECK
(
!
sequenceStartPositions
);
CHECK_GE
(
static_cast
<
int
>
(
labelSeqStartPositions
.
size
()),
2
);
sequenceStartPositions
=
...
...
@@ -410,6 +409,19 @@ void initDataLayer(TestConfig testConf,
useGpu
);
data
.
sequenceStartPositions
=
sequenceStartPositions
;
}
const
std
::
vector
<
int
>&
labelSubSeqStartPositions
=
testConf
.
inputDefs
[
i
].
labelSubSeqStartPositions
;
if
(
labelSubSeqStartPositions
.
size
()
!=
0
)
{
CHECK_GE
(
static_cast
<
int
>
(
labelSubSeqStartPositions
.
size
()),
2
);
subSequenceStartPositions
=
ICpuGpuVector
::
create
(
labelSubSeqStartPositions
.
size
(),
useGpu
);
subSequenceStartPositions
->
copyFrom
(
labelSubSeqStartPositions
.
data
(),
labelSubSeqStartPositions
.
size
(),
useGpu
);
data
.
subSequenceStartPositions
=
subSequenceStartPositions
;
}
break
;
}
default:
...
...
paddle/gserver/tests/LayerGradUtil.h
浏览文件 @
4b39f92b
...
...
@@ -67,6 +67,7 @@ struct InputDef {
bool
isStatic
;
std
::
vector
<
int
>
labelInitValue
;
std
::
vector
<
int
>
labelSeqStartPositions
;
std
::
vector
<
int
>
labelSubSeqStartPositions
;
MatrixPtr
selfDefinedData
;
InputDef
(
InputType
type
,
string
nameIn
,
size_t
dimIn
,
size_t
sizeIn
)
{
...
...
@@ -81,8 +82,10 @@ struct InputDef {
InputDef
(
InputType
type
,
string
nameIn
,
MatrixPtr
selfDefinedData
,
std
::
vector
<
int
>
selfDefinedSeqStartPos
=
{})
std
::
vector
<
int
>
selfDefinedSeqStartPos
=
{},
std
::
vector
<
int
>
selfDefinedSubSeqStartPos
=
{})
:
labelSeqStartPositions
(
selfDefinedSeqStartPos
),
labelSubSeqStartPositions
(
selfDefinedSubSeqStartPos
),
selfDefinedData
(
selfDefinedData
)
{
inputType
=
type
;
name
=
nameIn
;
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
4b39f92b
...
...
@@ -920,14 +920,15 @@ TEST(Layer, SequenceLastInstanceLayer) {
}
TEST
(
Layer
,
AverageLayer
)
{
testDegradeLayer
(
false
,
"average"
,
"non-seq"
,
-
1
);
// seq average to non-seq
testDegradeLayer
(
false
,
"average"
,
"non-seq"
,
5
);
// seq average to a shorten seq, stride window = 5
testDegradeLayer
(
true
,
"average"
,
"non-seq"
,
-
1
);
// hasSubseq average to non-seq
testDegradeLayer
(
true
,
"average"
,
"seq"
,
-
1
);
// hasSubseq average to seq
testDegradeLayer
(
false
,
"average"
,
"non-seq"
,
-
1
);
// seq average to
non
-
seq
testDegradeLayer
(
false
,
"average"
,
"non-seq"
,
5
);
// seq average to a shorten seq, stride window = 5
testDegradeLayer
(
true
,
"average"
,
"non-seq"
,
-
1
);
// hasSubseq average to
non
-
seq
testDegradeLayer
(
true
,
"average"
,
"seq"
,
-
1
);
// hasSubseq average to seq
}
TEST
(
Layer
,
SequenceConcatLayer
)
{
...
...
@@ -1879,6 +1880,68 @@ TEST(Layer, CropLayer) {
}
}
TEST
(
Layer
,
SubNestedSequenceLayer
)
{
const
int
layerSize
=
128
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"sub_nested_seq"
);
config
.
layerConfig
.
set_top_k
(
2
);
config
.
layerConfig
.
set_name
(
"sub_nested_seq_layer"
);
config
.
layerConfig
.
set_size
(
layerSize
);
// Generate the first input
srand
((
size_t
)(
time
(
NULL
)));
const
int
batchSize
=
128
;
const
int
maxSeqLen
=
100
;
const
int
maxSubSeqNum
=
50
;
// sequenceStartPositioins info for the first input.
vector
<
int
>
seqStartPos1
(
batchSize
+
1
,
0
);
// subSequenceStartPositioins info for the first input.
vector
<
int
>
subSeqStartPos
;
subSeqStartPos
.
push_back
(
0
);
// sequenceStartPositioins info for the second input.
vector
<
int
>
seqStartPos2
(
batchSize
+
1
,
0
);
size_t
curPos
=
0
;
for
(
int
i
=
1
;
i
<
batchSize
+
1
;
++
i
)
{
int
seqNum
=
uniformRandom
(
maxSubSeqNum
);
seqStartPos2
[
i
]
=
seqStartPos2
[
i
-
1
]
+
seqNum
;
for
(
int
j
=
0
;
j
<
seqNum
;
++
j
)
{
int
seqLen
=
uniformRandom
(
maxSeqLen
);
subSeqStartPos
.
push_back
(
curPos
+
seqLen
);
curPos
+=
seqLen
;
}
seqStartPos1
[
i
]
=
curPos
;
}
MatrixPtr
dataInputPtr1
=
Matrix
::
create
(
curPos
,
layerSize
,
false
,
false
);
dataInputPtr1
->
randomizeUniform
();
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"layer_0"
,
dataInputPtr1
,
seqStartPos1
,
subSeqStartPos
});
config
.
layerConfig
.
add_inputs
();
// Generate the second input
MatrixPtr
dataInputPtr2
=
Matrix
::
create
(
seqStartPos2
[
batchSize
],
1
,
false
,
false
);
dataInputPtr2
->
randomizeUniform
();
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"layer_1"
,
dataInputPtr2
,
seqStartPos2
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"sub_nested_seq"
,
/* batchSize */
100
,
/* trans */
false
,
/* useGpu*/
useGpu
,
/* useWeight */
false
);
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
4b39f92b
...
...
@@ -31,33 +31,104 @@ except ImportError:
import
copy
__all__
=
[
'full_matrix_projection'
,
'AggregateLevel'
,
'ExpandLevel'
,
'identity_projection'
,
'dotmul_projection'
,
'dotmul_operator'
,
'repeat_layer'
,
'seq_reshape_layer'
,
'table_projection'
,
'mixed_layer'
,
'data_layer'
,
'embedding_layer'
,
'fc_layer'
,
'grumemory'
,
'pooling_layer'
,
'lstmemory'
,
'last_seq'
,
'first_seq'
,
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'mse_cost'
,
'regression_cost'
,
'classification_cost'
,
'LayerOutput'
,
'img_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'seq_concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'scaling_projection'
,
'power_layer'
,
'interpolation_layer'
,
'bilinear_interp_layer'
,
'trans_layer'
,
'rotate_layer'
,
'sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'gru_step_naive_layer'
,
'recurrent_layer'
,
'BaseGeneratedInput'
,
'conv_operator'
,
'conv_shift_layer'
,
'tensor_layer'
,
'selective_fc_layer'
,
'sampling_id_layer'
,
'slope_intercept_layer'
,
'trans_full_matrix_projection'
,
'linear_comb_layer'
,
'convex_comb_layer'
,
'ctc_layer'
,
'warp_ctc_layer'
,
'crf_layer'
,
'crf_decoding_layer'
,
'nce_layer'
,
'cross_entropy_with_selfnorm'
,
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
'printer_layer'
,
'print_layer'
,
'priorbox_layer'
,
'cross_channel_norm_layer'
,
'multibox_loss_layer'
,
'detection_output_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'smooth_l1_cost'
,
'layer_support'
,
'multiplex_layer'
,
'row_conv_layer'
,
'dropout_layer'
,
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'sub_nested_seq_layer'
'full_matrix_projection'
,
'AggregateLevel'
,
'ExpandLevel'
,
'identity_projection'
,
'dotmul_projection'
,
'dotmul_operator'
,
'repeat_layer'
,
'seq_reshape_layer'
,
'table_projection'
,
'mixed_layer'
,
'data_layer'
,
'embedding_layer'
,
'fc_layer'
,
'grumemory'
,
'pooling_layer'
,
'lstmemory'
,
'last_seq'
,
'first_seq'
,
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'mse_cost'
,
'regression_cost'
,
'classification_cost'
,
'LayerOutput'
,
'img_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'seq_concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'scaling_projection'
,
'power_layer'
,
'interpolation_layer'
,
'bilinear_interp_layer'
,
'trans_layer'
,
'rotate_layer'
,
'sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'gru_step_naive_layer'
,
'recurrent_layer'
,
'BaseGeneratedInput'
,
'conv_operator'
,
'conv_shift_layer'
,
'tensor_layer'
,
'selective_fc_layer'
,
'sampling_id_layer'
,
'slope_intercept_layer'
,
'trans_full_matrix_projection'
,
'linear_comb_layer'
,
'convex_comb_layer'
,
'ctc_layer'
,
'warp_ctc_layer'
,
'crf_layer'
,
'crf_decoding_layer'
,
'nce_layer'
,
'cross_entropy_with_selfnorm'
,
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'sum_cost'
,
'rank_cost'
,
'lambda_cost'
,
'huber_cost'
,
'block_expand_layer'
,
'maxout_layer'
,
'out_prod_layer'
,
'printer_layer'
,
'print_layer'
,
'priorbox_layer'
,
'cross_channel_norm_layer'
,
'multibox_loss_layer'
,
'detection_output_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'smooth_l1_cost'
,
'layer_support'
,
'multiplex_layer'
,
'row_conv_layer'
,
'dropout_layer'
,
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'sub_nested_seq_layer'
,
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录