Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cf146106
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cf146106
编写于
7月 19, 2023
作者:
J
jjyaoao
提交者:
GitHub
7月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
修改COPY-FROM No.14 incubate (#55234)
Signed-off-by:
N
jjyaoao
<
jjyaoao@126.com
>
上级
413efdc9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
92 addition
and
22 deletion
+92
-22
python/paddle/incubate/optimizer/functional/bfgs.py
python/paddle/incubate/optimizer/functional/bfgs.py
+39
-11
python/paddle/incubate/optimizer/functional/lbfgs.py
python/paddle/incubate/optimizer/functional/lbfgs.py
+40
-11
python/paddle/optimizer/lr.py
python/paddle/optimizer/lr.py
+13
-0
未找到文件。
python/paddle/incubate/optimizer/functional/bfgs.py
浏览文件 @
cf146106
...
@@ -79,20 +79,48 @@ def minimize_bfgs(
...
@@ -79,20 +79,48 @@ def minimize_bfgs(
Examples:
Examples:
.. code-block:: python
.. code-block:: python
:name: code-example1
# Example1: 1D Grid Parameters
import paddle
import paddle
# Randomly simulate a batch of input data
inputs = paddle. normal(shape=(100, 1))
labels = inputs * 2.0
# define the loss function
def loss(w):
y = w * inputs
return paddle.nn.functional.square_error_cost(y, labels).mean()
# Initialize weight parameters
w = paddle.normal(shape=(1,))
# Call the bfgs method to solve the weight that makes the loss the smallest, and update the parameters
for epoch in range(0, 10):
# Call the bfgs method to optimize the loss, note that the third parameter returned represents the weight
w_update = paddle.incubate.optimizer.functional.minimize_bfgs(loss, w)[2]
# Use paddle.assign to update parameters in place
paddle. assign(w_update, w)
def func(x):
.. code-block:: python
return paddle.dot(x, x)
:name: code-example2
x0 = paddle.to_tensor([1.3, 2.7])
# Example2: Multidimensional Grid Parameters
results = paddle.incubate.optimizer.functional.minimize_bfgs(func, x0)
import paddle
print("is_converge: ", results[0])
def flatten(x):
print("the minimum of func is: ", results[2])
return x. flatten()
# is_converge: is_converge: Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
def unflatten(x):
# [True])
return x.reshape((2,2))
# the minimum of func is: Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# Assume the network parameters are more than one dimension
# [0., 0.])
def net(x):
assert len(x.shape) > 1
return x.square().mean()
# function to be optimized
def bfgs_f(flatten_x):
return net(unflatten(flatten_x))
x = paddle.rand([2,2])
for i in range(0, 10):
# Flatten x before using minimize_bfgs
x_update = paddle.incubate.optimizer.functional.minimize_bfgs(bfgs_f, flatten(x))[2]
# unflatten x_update, then update parameters
paddle. assign(unflatten(x_update), x)
"""
"""
if
dtype
not
in
[
'float32'
,
'float64'
]:
if
dtype
not
in
[
'float32'
,
'float64'
]:
...
...
python/paddle/incubate/optimizer/functional/lbfgs.py
浏览文件 @
cf146106
...
@@ -80,20 +80,49 @@ def minimize_lbfgs(
...
@@ -80,20 +80,49 @@ def minimize_lbfgs(
Examples:
Examples:
.. code-block:: python
.. code-block:: python
:name: code-example1
# Example1: 1D Grid Parameters
import paddle
import paddle
# Randomly simulate a batch of input data
inputs = paddle. normal(shape=(100, 1))
labels = inputs * 2.0
# define the loss function
def loss(w):
y = w * inputs
return paddle.nn.functional.square_error_cost(y, labels).mean()
# Initialize weight parameters
w = paddle.normal(shape=(1,))
# Call the bfgs method to solve the weight that makes the loss the smallest, and update the parameters
for epoch in range(0, 10):
# Call the bfgs method to optimize the loss, note that the third parameter returned represents the weight
w_update = paddle.incubate.optimizer.functional.minimize_bfgs(loss, w)[2]
# Use paddle.assign to update parameters in place
paddle. assign(w_update, w)
.. code-block:: python
:name: code-example2
# Example2: Multidimensional Grid Parameters
import paddle
def flatten(x):
return x. flatten()
def unflatten(x):
return x.reshape((2,2))
# Assume the network parameters are more than one dimension
def net(x):
assert len(x.shape) > 1
return x.square().mean()
# function to be optimized
def bfgs_f(flatten_x):
return net(unflatten(flatten_x))
x = paddle.rand([2,2])
for i in range(0, 10):
# Flatten x before using minimize_bfgs
x_update = paddle.incubate.optimizer.functional.minimize_bfgs(bfgs_f, flatten(x))[2]
# unflatten x_update, then update parameters
paddle. assign(unflatten(x_update), x)
def func(x):
return paddle.dot(x, x)
x0 = paddle.to_tensor([1.3, 2.7])
results = paddle.incubate.optimizer.functional.minimize_lbfgs(func, x0)
print("is_converge: ", results[0])
print("the minimum of func is: ", results[2])
# is_converge: is_converge: Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
# [True])
# the minimum of func is: Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [0., 0.])
"""
"""
if
dtype
not
in
[
'float32'
,
'float64'
]:
if
dtype
not
in
[
'float32'
,
'float64'
]:
raise
ValueError
(
raise
ValueError
(
...
...
python/paddle/optimizer/lr.py
浏览文件 @
cf146106
...
@@ -125,6 +125,19 @@ class LRScheduler:
...
@@ -125,6 +125,19 @@ class LRScheduler:
Returns:
Returns:
None
None
Examples:
.. code-block:: python
import paddle
value = paddle.arange(26, dtype='float32')
a = paddle.reshape(value, [2, 13])
linear = paddle.nn.Linear(13, 5)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
parameters = linear.parameters())
out = linear(a)
out.backward()
adadelta.step()
adadelta.clear_grad()
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录