Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ce674b68
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ce674b68
编写于
12月 06, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add readme doc and complete TODOs
上级
fab0ee87
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
65 addition
and
39 deletion
+65
-39
paddle/fluid/operators/jitkernels/README.md
paddle/fluid/operators/jitkernels/README.md
+44
-2
paddle/fluid/operators/jitkernels/jitcode_base.h
paddle/fluid/operators/jitkernels/jitcode_base.h
+1
-5
paddle/fluid/operators/jitkernels/kernel_base.h
paddle/fluid/operators/jitkernels/kernel_base.h
+10
-3
paddle/fluid/operators/jitkernels/kernel_pool.h
paddle/fluid/operators/jitkernels/kernel_pool.h
+1
-13
paddle/fluid/operators/jitkernels/more/mkl/mkl.h
paddle/fluid/operators/jitkernels/more/mkl/mkl.h
+2
-9
paddle/fluid/operators/jitkernels/refer/refer.h
paddle/fluid/operators/jitkernels/refer/refer.h
+2
-2
paddle/fluid/operators/jitkernels/registry.h
paddle/fluid/operators/jitkernels/registry.h
+1
-1
paddle/fluid/operators/jitkernels/test.cc
paddle/fluid/operators/jitkernels/test.cc
+4
-4
未找到文件。
paddle/fluid/operators/jitkernels/README.md
浏览文件 @
ce674b68
TBD
# JIT Kernel
结合函数模板和JIT生成需要的kernel函数。
这里的kernel是比Operator中kernel更小级别的算子单元,更侧重的是在不同硬件上的性能。
目前仅支持CPU上的高性能计算。
## 目录结构
```
txt
PaddlePaddle/Paddle/paddle/fluid/
├── ...
├── operator/
│ ├── .../
└── jit/
├── ...
├── jitcode/
│ └── ...
|── more/
│ ├── ...
│ ├── mkl/
│ │ └── ...
│ └── openblas/
│ └── ...
└── refer/
└── ...
```
基础class都的根目录下,根目录下包括jitcode,more和refer。每个目录下都是一种实现,每种kernel算子都需要有reference的实现,其他的都是可选的。
-
jitcode: 代表使用jit生成的code,需要依赖xbyak。他关心的是性能。
-
refer:代表reference的实现,每种kernel算子都需要有在CPU上的reference的实现,他主要关心的算法逻辑。
-
more: 下面可以放入跟多实现,包括mkl,mkldnn,openblas等,也可以是自身已有的kernel组合。
# Use me
## 动态获取
提供一个get方法,根据kernel类别获取,每种实现都有自己的使用范围,根据范围动态和当前条件选择需要的kernel函数。
## 测试
-
逻辑测试
所有实现都要与refer的code对比,需要满足精度要求
-
性能测试
# 如何添加新的算子
TBD
## Use me
Add USE_JIT_KERNEL(yourname) to CMakefile.
paddle/fluid/operators/jitkernels/jitcode_base.h
浏览文件 @
ce674b68
...
...
@@ -62,11 +62,7 @@ class JitBase : public Kernel {
};
template
<
KernelType
KT
,
typename
T
,
typename
Attr
>
std
::
unique_ptr
<
JitBase
>
CreateJitCode
(
Attr
attr
);
//{
// if (UseJitCode<KT,T,Attr>) {
// return make_unique<xxxxclass>(attr, CodeSize<KT,T,Attr>());
// }
// }
std
::
unique_ptr
<
JitBase
>
CreateJitCode
(
Attr
attr
);
}
// namespace jitkernels
}
// namespace operators
...
...
paddle/fluid/operators/jitkernels/kernel_base.h
浏览文件 @
ce674b68
...
...
@@ -21,6 +21,13 @@ namespace jitkernels {
typedef
enum
{
vmul
=
0
,
vadd
=
1
,
vsub
,
vexp
}
KernelType
;
template
<
typename
T
>
struct
VMulTypes
{
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
const
T
*
,
T
*
,
int
);
};
// Just for adding to kernel pool without template
class
Kernel
{
public:
...
...
@@ -29,10 +36,10 @@ class Kernel {
DISABLE_COPY_AND_ASSIGN
(
Kernel
);
};
template
<
typename
T
,
typename
Func
,
typename
Attr
>
// TODO(TJ): use tuple
template
<
typename
T
,
typename
Func
,
typename
Attr
>
class
KernelImpl
:
public
Kernel
{
public:
using
ELEMENT_TYPE
=
T
;
// TODO(TJ): remove me?
using
ELEMENT_TYPE
=
T
;
virtual
Func
GetFunc
()
const
{
return
func
;
}
virtual
bool
UseMe
(
Attr
attr
)
const
=
0
;
...
...
@@ -40,7 +47,7 @@ class KernelImpl : public Kernel {
Func
func
{
nullptr
};
};
template
<
typename
T
,
typename
Func
,
typename
Attr
>
// TODO(TJ): use tuple
template
<
typename
T
,
typename
Func
,
typename
Attr
>
class
ReferKernel
:
public
KernelImpl
<
T
,
Func
,
Attr
>
{
public:
// Refer code can always be used
...
...
paddle/fluid/operators/jitkernels/kernel_pool.h
浏览文件 @
ce674b68
...
...
@@ -27,8 +27,6 @@ namespace paddle {
namespace
operators
{
namespace
jitkernels
{
// TODO(TJ): rename file to kernel_pool
template
<
KernelType
KT
>
class
JitCodePool
{
typedef
std
::
unique_ptr
<
JitBase
>
JitBasePtr
;
...
...
@@ -54,14 +52,6 @@ class JitCodePool {
DISABLE_COPY_AND_ASSIGN
(
JitCodePool
);
};
// TODO(TJ): std::tuple<T, Func, Attr>
// template <typename T, typename Func, typename Attr>
// struct KernelAttr {
// typedef T data_type;
// typedef Func return_type;
// typedef Attr attr_type;
// };
typedef
std
::
unique_ptr
<
const
Kernel
>
KernelPtr
;
typedef
std
::
unordered_map
<
KernelKey
,
std
::
vector
<
KernelPtr
>
,
KernelKey
::
Hash
>
KernelMap
;
...
...
@@ -120,7 +110,6 @@ inline Func GetRefer() {
return
nullptr
;
}
// TODO(TJ): make tuple? named KernelAttr
template
<
KernelType
KT
,
typename
T
,
typename
Func
,
typename
Attr
,
typename
PlaceType
=
platform
::
CPUPlace
>
const
Func
Get
(
Attr
attr
)
{
...
...
@@ -130,8 +119,7 @@ const Func Get(Attr attr) {
return
codes
.
AllKernels
().
at
(
key
)
->
template
getCode
<
Func
>();
}
if
(
std
::
is_same
<
PlaceType
,
platform
::
CPUPlace
>::
value
)
{
// TODO(TJ): float
// move to create
if
(
std
::
is_same
<
PlaceType
,
platform
::
CPUPlace
>::
value
)
{
auto
p
=
CreateJitCode
<
KT
,
T
,
Attr
>
(
attr
);
if
(
p
)
{
auto
f
=
p
->
template
getCode
<
Func
>();
...
...
paddle/fluid/operators/jitkernels/more/mkl/mkl.h
浏览文件 @
ce674b68
...
...
@@ -27,16 +27,9 @@ namespace mkl {
template
<
typename
T
>
void
VMul
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
n
);
// template <typename T>
// struct VMulTypes{
// typedef T date_type;
// typedef void (*func)(const T*, const T*, T*, int) func_type;
// typedef int attr_type;
// };
template
<
typename
T
>
class
VMulKernel
:
public
KernelImpl
<
T
,
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
),
int
>
{
class
VMulKernel
:
public
KernelImpl
<
T
,
typename
VMulTypes
<
T
>::
func_type
,
typename
VMulTypes
<
T
>::
attr_type
>
{
public:
VMulKernel
()
{
this
->
func
=
VMul
<
T
>
;
}
bool
UseMe
(
int
d
)
const
override
{
...
...
paddle/fluid/operators/jitkernels/refer/refer.h
浏览文件 @
ce674b68
...
...
@@ -29,8 +29,8 @@ void VMul(const T* x, const T* y, T* z, int n) {
}
template
<
typename
T
>
class
VMulKernel
:
public
ReferKernel
<
T
,
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
),
int
>
{
class
VMulKernel
:
public
ReferKernel
<
T
,
typename
VMulTypes
<
T
>::
func_type
,
typename
VMulTypes
<
T
>::
attr_type
>
{
public:
VMulKernel
()
{
this
->
func
=
VMul
<
T
>
;
}
};
...
...
paddle/fluid/operators/jitkernels/registry.h
浏览文件 @
ce674b68
...
...
@@ -26,7 +26,7 @@ namespace paddle {
namespace
operators
{
namespace
jitkernels
{
// make_unique is supported
from
c++14
// make_unique is supported
since
c++14
template
<
typename
T
,
typename
...
Args
>
inline
std
::
unique_ptr
<
T
>
make_unique
(
Args
&&
...
args
)
{
static_assert
(
!
std
::
is_array
<
T
>::
value
,
"T must not be array"
);
...
...
paddle/fluid/operators/jitkernels/test.cc
浏览文件 @
ce674b68
...
...
@@ -69,10 +69,10 @@ TEST(JitKernel, vmul) {
namespace
jit
=
paddle
::
operators
::
jitkernels
;
// TODO(TJ): test more vector size
for
(
int
d
=
1
;
d
<
30
;
++
d
)
{
auto
ref
=
jit
::
GetRefer
<
jit
::
vmul
,
T
,
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
),
int
>
();
auto
tgt
=
jit
::
Get
<
jit
::
vmul
,
T
,
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
,
int
,
PlaceType
>
(
d
);
auto
ref
=
jit
::
GetRefer
<
jit
::
vmul
,
T
,
jit
::
VMulTypes
<
T
>::
func_type
,
jit
::
VMulTypes
<
T
>::
attr_type
>
();
auto
tgt
=
jit
::
Get
<
jit
::
vmul
,
T
,
jit
::
VMulTypes
<
T
>::
func_type
,
jit
::
VMulTypes
<
T
>::
attr_type
,
PlaceType
>
(
d
);
EXPECT_TRUE
(
ref
!=
nullptr
);
EXPECT_TRUE
(
tgt
!=
nullptr
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录