Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fab0ee87
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fab0ee87
编写于
12月 06, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/jitkernel
上级
a1eb21e7
c6b39a00
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
585 addition
and
198 deletion
+585
-198
cmake/operators.cmake
cmake/operators.cmake
+2
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+3
-2
paddle/fluid/framework/op_kernel_type.cc
paddle/fluid/framework/op_kernel_type.cc
+54
-0
paddle/fluid/framework/op_kernel_type.h
paddle/fluid/framework/op_kernel_type.h
+30
-29
paddle/fluid/framework/op_registry.h
paddle/fluid/framework/op_registry.h
+85
-45
paddle/fluid/framework/operator_test.cc
paddle/fluid/framework/operator_test.cc
+42
-1
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
+1
-2
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
+18
-82
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+9
-5
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+8
-2
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+2
-0
paddle/fluid/operators/cudnn_lstm_op.cu.cc
paddle/fluid/operators/cudnn_lstm_op.cu.cc
+8
-0
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+6
-6
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+0
-1
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-0
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+41
-16
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+4
-0
paddle/fluid/operators/math/prelu.cu
paddle/fluid/operators/math/prelu.cu
+148
-0
paddle/fluid/operators/math/prelu.h
paddle/fluid/operators/math/prelu.h
+49
-0
paddle/fluid/operators/prelu_op.cc
paddle/fluid/operators/prelu_op.cc
+1
-1
paddle/fluid/operators/prelu_op.cu
paddle/fluid/operators/prelu_op.cu
+64
-0
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+7
-2
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+0
-2
未找到文件。
cmake/operators.cmake
浏览文件 @
fab0ee87
...
...
@@ -166,6 +166,8 @@ function(op_library TARGET)
# Append first implemented MKLDNN activation operator
if
(
${
MKLDNN_FILE
}
STREQUAL
"activation_mkldnn_op"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL(relu, MKLDNN);
\n
"
)
elseif
(
${
MKLDNN_FILE
}
STREQUAL
"conv_mkldnn_op"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN, FP32);
\n
"
)
else
()
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL(
${
TARGET
}
, MKLDNN);
\n
"
)
endif
()
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
fab0ee87
...
...
@@ -118,8 +118,9 @@ cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library
(
shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context
)
cc_library
(
transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context
)
cc_library
(
op_kernel_type SRCS op_kernel_type.cc DEPS device_context place
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler transfer_scope_cache
)
shape_inference data_transform lod_tensor profiler transfer_scope_cache
op_kernel_type
)
cc_test
(
operator_test SRCS operator_test.cc DEPS operator op_registry device_context
)
...
...
@@ -191,7 +192,7 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
cc_library
(
selected_rows SRCS selected_rows.cc DEPS tensor
)
cc_test
(
selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows
)
cc_test
(
op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto
)
cc_test
(
op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto
op_kernel_type
)
cc_test
(
cow_ptr_tests SRCS details/cow_ptr_test.cc
)
cc_test
(
tuple_test SRCS tuple_test.cc
)
...
...
paddle/fluid/framework/op_kernel_type.cc
0 → 100644
浏览文件 @
fab0ee87
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_kernel_type.h"
namespace
paddle
{
namespace
framework
{
size_t
OpKernelType
::
Hash
::
operator
()(
const
OpKernelType
&
key
)
const
{
int
cur_loc
=
0
;
int
place
=
key
.
place_
.
which
();
cur_loc
+=
OpKernelType
::
kPlaceBits
;
int
data_type
=
static_cast
<
int
>
(
key
.
data_type_
)
<<
cur_loc
;
cur_loc
+=
OpKernelType
::
kPrimaryDTypeBits
;
int
data_layout
=
static_cast
<
int
>
(
key
.
data_layout_
)
<<
cur_loc
;
cur_loc
+=
OpKernelType
::
kLayoutBits
;
int
library_type
=
static_cast
<
int
>
(
key
.
library_type_
)
<<
cur_loc
;
cur_loc
+=
OpKernelType
::
kLibBits
;
int
customized_value
=
key
.
customized_type_value_
;
PADDLE_ENFORCE
(
customized_value
<
(
1
<<
OpKernelType
::
kCustomizeBits
));
customized_value
=
customized_value
<<
cur_loc
;
cur_loc
+=
OpKernelType
::
kCustomizeBits
;
PADDLE_ENFORCE
(
cur_loc
<
64
);
std
::
hash
<
int
>
hasher
;
return
hasher
(
place
+
data_type
+
data_layout
+
library_type
+
customized_value
);
}
bool
OpKernelType
::
operator
==
(
const
OpKernelType
&
o
)
const
{
return
platform
::
places_are_same_class
(
place_
,
o
.
place_
)
&&
data_type_
==
o
.
data_type_
&&
data_layout_
==
o
.
data_layout_
&&
library_type_
==
o
.
library_type_
&&
customized_type_value_
==
o
.
customized_type_value_
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_kernel_type.h
浏览文件 @
fab0ee87
...
...
@@ -24,54 +24,55 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
OpKernelType
{
struct
Hash
{
size_t
operator
()(
const
OpKernelType
&
key
)
const
{
int
place
=
key
.
place_
.
which
();
int
data_type
=
static_cast
<
int
>
(
key
.
data_type_
)
<<
LEFT_SHIFT
;
int
data_layout
=
static_cast
<
int
>
(
key
.
data_layout_
)
<<
(
LEFT_SHIFT
*
2
);
int
library_type
=
static_cast
<
int
>
(
key
.
library_type_
)
<<
(
LEFT_SHIFT
*
3
);
std
::
hash
<
int
>
hasher
;
return
hasher
(
place
+
data_type
+
data_layout
+
library_type
);
}
};
class
OpKernelType
{
public:
constexpr
static
int
kDefaultCustomizedTypeValue
=
0
;
// place, data_type, library_type kinds less than 2^8
constexpr
static
int
LEFT_SHIFT
=
8
;
proto
::
VarType
::
Type
data_type_
;
DataLayout
data_layout_
;
platform
::
Place
place_
;
LibraryType
library_type_
;
// In total should be smaller than 64.
constexpr
static
int
kPlaceBits
=
4
;
constexpr
static
int
kPrimaryDTypeBits
=
8
;
constexpr
static
int
kLayoutBits
=
4
;
constexpr
static
int
kLibBits
=
4
;
constexpr
static
int
kCustomizeBits
=
4
;
OpKernelType
(
proto
::
VarType
::
Type
data_type
,
platform
::
Place
place
,
DataLayout
data_layout
=
DataLayout
::
kAnyLayout
,
LibraryType
library_type
=
LibraryType
::
kPlain
)
LibraryType
library_type
=
LibraryType
::
kPlain
,
int
customized_type_value
=
kDefaultCustomizedTypeValue
)
:
data_type_
(
data_type
),
data_layout_
(
data_layout
),
place_
(
place
),
library_type_
(
library_type
)
{}
library_type_
(
library_type
),
customized_type_value_
(
customized_type_value
)
{}
OpKernelType
(
proto
::
VarType
::
Type
data_type
,
const
platform
::
DeviceContext
&
dev_ctx
,
DataLayout
data_layout
=
DataLayout
::
kAnyLayout
,
LibraryType
library_type
=
LibraryType
::
kPlain
)
LibraryType
library_type
=
LibraryType
::
kPlain
,
int
customized_type_value
=
kDefaultCustomizedTypeValue
)
:
data_type_
(
data_type
),
data_layout_
(
data_layout
),
place_
(
dev_ctx
.
GetPlace
()),
library_type_
(
library_type
)
{}
library_type_
(
library_type
),
customized_type_value_
(
customized_type_value
)
{}
virtual
~
OpKernelType
()
{}
struct
Hash
{
size_t
operator
()(
const
OpKernelType
&
key
)
const
;
};
size_t
hash_key
()
const
{
return
Hash
()(
*
this
);
}
bool
operator
==
(
const
OpKernelType
&
o
)
const
{
return
platform
::
places_are_same_class
(
place_
,
o
.
place_
)
&&
data_type_
==
o
.
data_type_
&&
data_layout_
==
o
.
data_layout_
&&
library_type_
==
o
.
library_type_
;
}
bool
operator
==
(
const
OpKernelType
&
o
)
const
;
bool
operator
!=
(
const
OpKernelType
&
o
)
const
{
return
!
(
*
this
==
o
);
}
proto
::
VarType
::
Type
data_type_
;
DataLayout
data_layout_
;
platform
::
Place
place_
;
LibraryType
library_type_
;
int
customized_type_value_
;
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
...
...
paddle/fluid/framework/op_registry.h
浏览文件 @
fab0ee87
...
...
@@ -35,6 +35,7 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
class
Registrar
{
public:
// In our design, various kinds of classes, e.g., operators and kernels,
...
...
@@ -78,7 +79,7 @@ struct OpKernelRegistrarFunctor;
template
<
typename
PlaceType
,
typename
T
,
typename
Func
>
inline
void
RegisterKernelClass
(
const
char
*
op_type
,
const
char
*
library_type
,
Func
func
)
{
int
customized_type_value
,
Func
func
)
{
std
::
string
library
(
library_type
);
std
::
string
data_layout
=
"ANYLAYOUT"
;
if
(
library
==
"MKLDNN"
)
{
...
...
@@ -86,7 +87,7 @@ inline void RegisterKernelClass(const char* op_type, const char* library_type,
}
OpKernelType
key
(
ToDataType
(
std
::
type_index
(
typeid
(
T
))),
PlaceType
(),
StringToDataLayout
(
data_layout
),
StringToLibraryType
(
library_type
));
StringToLibraryType
(
library_type
)
,
customized_type_value
);
OperatorWithKernel
::
AllOpKernels
()[
op_type
][
key
]
=
func
;
}
...
...
@@ -95,22 +96,26 @@ struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> {
using
KERNEL_TYPE
=
typename
std
::
tuple_element
<
I
,
std
::
tuple
<
KernelTypes
...
>>::
type
;
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
)
const
{
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
const
{
using
T
=
typename
KERNEL_TYPE
::
ELEMENT_TYPE
;
RegisterKernelClass
<
PlaceType
,
T
>
(
op_type
,
library_type
,
[](
const
framework
::
ExecutionContext
&
ctx
)
{
op_type
,
library_type
,
customized_type_value
,
[](
const
framework
::
ExecutionContext
&
ctx
)
{
KERNEL_TYPE
().
Compute
(
ctx
);
});
constexpr
auto
size
=
std
::
tuple_size
<
std
::
tuple
<
KernelTypes
...
>>::
value
;
OpKernelRegistrarFunctor
<
PlaceType
,
I
+
1
==
size
,
I
+
1
,
KernelTypes
...
>
func
;
func
(
op_type
,
library_type
);
func
(
op_type
,
library_type
,
customized_type_value
);
}
};
template
<
typename
PlaceType
,
size_t
I
,
typename
...
KernelType
>
struct
OpKernelRegistrarFunctor
<
PlaceType
,
true
,
I
,
KernelType
...
>
{
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
)
const
{}
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
const
{}
};
// User can register many kernel in one place. The data type could be
...
...
@@ -118,9 +123,10 @@ struct OpKernelRegistrarFunctor<PlaceType, true, I, KernelType...> {
template
<
typename
PlaceType
,
typename
...
KernelType
>
class
OpKernelRegistrar
:
public
Registrar
{
public:
explicit
OpKernelRegistrar
(
const
char
*
op_type
,
const
char
*
library_type
)
{
explicit
OpKernelRegistrar
(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
{
OpKernelRegistrarFunctor
<
PlaceType
,
false
,
0
,
KernelType
...
>
func
;
func
(
op_type
,
library_type
);
func
(
op_type
,
library_type
,
customized_type_value
);
}
};
...
...
@@ -130,17 +136,19 @@ struct OpKernelRegistrarFunctorEx;
template
<
typename
PlaceType
,
typename
...
DataTypeAndKernelType
>
class
OpKernelRegistrarEx
:
public
Registrar
{
public:
explicit
OpKernelRegistrarEx
(
const
char
*
op_type
,
const
char
*
library_type
)
{
explicit
OpKernelRegistrarEx
(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
{
OpKernelRegistrarFunctorEx
<
PlaceType
,
false
,
0
,
DataTypeAndKernelType
...
>
func
;
func
(
op_type
,
library_type
);
func
(
op_type
,
library_type
,
customized_type_value
);
}
};
template
<
typename
PlaceType
,
size_t
I
,
typename
...
DataTypeAndKernelType
>
struct
OpKernelRegistrarFunctorEx
<
PlaceType
,
true
,
I
,
DataTypeAndKernelType
...
>
{
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
)
const
{}
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
const
{}
};
template
<
typename
PlaceType
,
size_t
I
,
typename
...
DataTypeAndKernelType
>
...
...
@@ -153,18 +161,21 @@ struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
typename
std
::
tuple_element
<
I
,
std
::
tuple
<
DataTypeAndKernelType
...
>>::
type
;
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
)
const
{
RegisterKernelClass
<
PlaceType
,
T
>
(
op_type
,
library_type
,
Functor
());
void
operator
()(
const
char
*
op_type
,
const
char
*
library_type
,
int
customized_type_value
)
const
{
RegisterKernelClass
<
PlaceType
,
T
>
(
op_type
,
library_type
,
customized_type_value
,
Functor
());
constexpr
auto
size
=
std
::
tuple_size
<
std
::
tuple
<
DataTypeAndKernelType
...
>>::
value
;
OpKernelRegistrarFunctorEx
<
PlaceType
,
I
+
2
>=
size
,
I
+
2
,
DataTypeAndKernelType
...
>
func
;
func
(
op_type
,
library_type
);
func
(
op_type
,
library_type
,
customized_type_value
);
}
};
// clang-format off
/**
* check if MACRO is used in GLOBAL NAMESPACE.
*/
...
...
@@ -199,42 +210,64 @@ struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
/**
* Macro to register OperatorKernel.
*/
#define REGISTER_OP_KERNEL(op_type, library_type, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##library_type##__, \
"REGISTER_OP_KERNEL must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##library_type##__(#op_type, \
#library_type); \
int TouchOpKernelRegistrar_##op_type##_##library_type() { \
__op_kernel_registrar_##op_type##_##library_type##__.Touch(); \
return 0; \
#define REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(op_type, library_type, \
place_class, customized_name, \
customized_type_value, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##library_type##_##customized_name##__, \
"REGISTER_OP_KERNEL must be called in " \
"global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, \
__VA_ARGS__> \
__op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
#op_type, #library_type, customized_type_value); \
int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
__op_kernel_registrar_##op_type##_##library_type##_##customized_name##__ \
.Touch(); \
return 0; \
}
#define REGISTER_OP_KERNEL(op_type, library_type, place_class, ...) \
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE( \
op_type, library_type, place_class, DEFAULT_TYPE, \
::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
__VA_ARGS__)
#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, CUDA, ::paddle::platform::CUDAPlace, __VA_ARGS__)
#define REGISTER_OP_CPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
#define REGISTER_OP_KERNEL_EX(op_type, library_type, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##library_type##__, \
"REGISTER_OP_KERNEL_EX must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrarEx<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##library_type##__(#op_type, \
#library_type); \
int TouchOpKernelRegistrar_##op_type##_##library_type() { \
__op_kernel_registrar_##op_type##_##library_type##__.Touch(); \
return 0; \
#define REGISTER_OP_KERNEL_EX(op_type, library_type, place_class, \
customized_name, \
customized_type_value, \
...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##library_type##_##customized_name##__, \
"REGISTER_OP_KERNEL_EX must be called in " \
"global namespace"); \
static ::paddle::framework::OpKernelRegistrarEx<place_class, \
__VA_ARGS__> \
__op_kernel_registrar_##op_type##_##library_type##_##customized_name##__(\
#op_type, #library_type, customized_type_value); \
int TouchOpKernelRegistrar_##op_type##_##library_type##_##customized_name() {\
__op_kernel_registrar_##op_type##_##library_type##_##customized_name##__ \
.Touch(); \
return 0; \
}
#define REGISTER_OP_CUDA_KERNEL_FUNCTOR(op_type, ...) \
REGISTER_OP_KERNEL_EX(op_type, CUDA, ::paddle::platform::CUDAPlace, \
__VA_ARGS__)
REGISTER_OP_KERNEL_EX( \
op_type, CUDA, ::paddle::platform::CUDAPlace, DEFAULT_TYPE, \
::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
__VA_ARGS__)
#define REGISTER_OP_CPU_KERNEL_FUNCTOR(op_type, ...) \
REGISTER_OP_KERNEL_EX(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
#define REGISTER_OP_CPU_KERNEL_FUNCTOR(op_type, ...) \
REGISTER_OP_KERNEL_EX( \
op_type, CPU, ::paddle::platform::CPUPlace, DEFAULT_TYPE, \
::paddle::framework::OpKernelType::kDefaultCustomizedTypeValue, \
__VA_ARGS__)
/**
* Macro to mark what Operator and Kernel
...
...
@@ -248,13 +281,19 @@ struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
extern int TouchOpRegistrar_##op_type(); \
UNUSED static int use_op_itself_##op_type##_ = TouchOpRegistrar_##op_type()
#define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##LIBRARY_TYPE##__, \
"USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE(); \
UNUSED static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_ = \
TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE()
#define USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type, \
LIBRARY_TYPE, \
customized_name) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##LIBRARY_TYPE##_##customized_name##__, \
"USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int \
TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name(); \
UNUSED static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_##DEFAULT_TYPE##_ =
/* NOLINT */
\
TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE##_##customized_name()
#define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \
USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(op_type, LIBRARY_TYPE, DEFAULT_TYPE)
// TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
...
...
@@ -280,6 +319,7 @@ struct OpKernelRegistrarFunctorEx<PlaceType, false, I,
#define USE_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
// clang-format off
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/operator_test.cc
浏览文件 @
fab0ee87
...
...
@@ -50,6 +50,8 @@ class OpWithoutKernelCheckerMaker : public OpProtoAndCheckerMaker {
AddInput
(
"input"
,
"input of test op"
);
AddOutput
(
"output"
,
"output of test op"
);
AddAttr
<
float
>
(
"scale"
,
"scale of cosine op"
);
AddAttr
<
int
>
(
"kernel_sub_type"
,
"kernels with different implementations."
)
.
SetDefault
(
0
);
AddComment
(
"This is test op"
);
}
};
...
...
@@ -95,6 +97,8 @@ TEST(OperatorBase, all) {
namespace
paddle
{
namespace
framework
{
static
int
special_type_value
=
1
;
class
OpKernelTestProtoAndCheckerMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
...
...
@@ -103,11 +107,14 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
AddAttr
<
float
>
(
"scale"
,
"scale of cosine op"
)
.
SetDefault
(
1.0
)
.
GreaterThan
(
0.0
);
AddAttr
<
int
>
(
"kernel_sub_type"
,
"kernels with different implementations."
)
.
SetDefault
(
0
);
AddComment
(
"This is test op"
);
}
};
static
int
cpu_kernel_run_num
=
0
;
static
int
cpu_kernel2_run_num
=
0
;
class
OpWithKernelTest
:
public
OperatorWithKernel
{
public:
...
...
@@ -117,7 +124,10 @@ class OpWithKernelTest : public OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
override
{
return
OpKernelType
(
proto
::
VarType
::
FP32
,
ctx
.
GetPlace
());
int
sub_type
=
ctx
.
Attr
<
int
>
(
"kernel_sub_type"
);
return
OpKernelType
(
proto
::
VarType
::
FP32
,
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kAnyLayout
,
framework
::
LibraryType
::
kPlain
,
sub_type
);
}
};
...
...
@@ -132,6 +142,17 @@ class CPUKernelTest : public OpKernel<float> {
}
};
template
<
typename
T1
,
typename
T2
>
class
CPUKernel2Test
:
public
OpKernel
<
float
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
{
std
::
cout
<<
ctx
.
op
().
DebugString
()
<<
std
::
endl
;
cpu_kernel2_run_num
++
;
ASSERT_EQ
(
ctx
.
op
().
Input
(
"x"
),
"IN1"
);
ASSERT_EQ
(
ctx
.
op
().
Output
(
"y"
),
"OUT1"
);
}
};
class
OpKernelTestMultiInputsProtoAndCheckerMaker
:
public
OpProtoAndCheckerMaker
{
public:
...
...
@@ -142,6 +163,8 @@ class OpKernelTestMultiInputsProtoAndCheckerMaker
AddAttr
<
float
>
(
"scale"
,
"scale of cosine op"
)
.
SetDefault
(
1.0
)
.
GreaterThan
(
0.0
);
AddAttr
<
int
>
(
"kernel_sub_type"
,
"kernels with different implementations."
)
.
SetDefault
(
0
);
AddComment
(
"This is test op"
);
}
};
...
...
@@ -189,9 +212,15 @@ class CPUKernalMultiInputsTest : public OpKernel<float> {
REGISTER_OP_WITHOUT_GRADIENT
(
op_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestProtoAndCheckerMaker
);
REGISTER_OP_CPU_KERNEL
(
op_with_kernel
,
paddle
::
framework
::
CPUKernelTest
<
float
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
op_with_kernel
,
CPU
,
paddle
::
platform
::
CPUPlace
,
MY_SPECIAL_NAME
,
paddle
::
framework
::
special_type_value
,
paddle
::
framework
::
CPUKernel2Test
<
float
,
float
>
);
// test with single input
TEST
(
OpKernel
,
all
)
{
paddle
::
framework
::
InitDevices
(
true
);
...
...
@@ -211,7 +240,19 @@ TEST(OpKernel, all) {
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel_run_num
,
0
);
op
->
Run
(
scope
,
cpu_place
);
// kerne_sub_type = 0, hence cpu_kernel is called, cpu_kernel2 is not called.
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel_run_num
,
1
);
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel2_run_num
,
0
);
attr
=
op_desc
.
mutable_attrs
()
->
Add
();
attr
->
set_name
(
"kernel_sub_type"
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
INT
);
attr
->
set_i
(
1
);
auto
op2
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
op2
->
Run
(
scope
,
cpu_place
);
// kerne_sub_type = 1, hence cpu_kernel2 is called, cpu_kernel is not called.
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel_run_num
,
1
);
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel2_run_num
,
1
);
}
REGISTER_OP_WITHOUT_GRADIENT
(
...
...
paddle/fluid/inference/tensorrt/convert/test_prelu_op.cc
浏览文件 @
fab0ee87
...
...
@@ -90,5 +90,4 @@ TEST(prelu_op, test_scalar) {
}
// namespace inference
}
// namespace paddle
// USE_OP(prelu);
USE_CPU_ONLY_OP
(
prelu
);
USE_OP
(
prelu
);
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
fab0ee87
nv_library
(
tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu
avg_pool_op_plugin.cu
DEPS enforce tensorrt_engine
)
DEPS enforce tensorrt_engine
prelu
)
paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.cu
浏览文件 @
fab0ee87
...
...
@@ -14,92 +14,16 @@
#include <stdio.h>
#include <cassert>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
#include "paddle/fluid/operators/math/prelu.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
static
const
int
CUDA_NUM_THREADS
=
1024
;
static
const
int
CUDA_MAX_NUM_BLOCKS
=
65535
;
inline
static
int
GET_NUM_BLOCKS
(
const
int
N
)
{
return
(
N
+
CUDA_NUM_THREADS
-
1
)
/
CUDA_NUM_THREADS
;
}
__global__
void
PReluChannelWiseKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
channel
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
float
*
out
=
output
+
offset
;
float
scale
=
alpha
[
blockIdx
.
x
%
channel
];
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
__global__
void
PReluElementWiseKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
const
float
*
scale
=
alpha
+
offset
;
float
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
[
i
]
*
x
;
}
}
__global__
void
PReluScalarKernel
(
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
float
*
in
=
input
+
offset
;
float
scale
=
*
alpha
;
float
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
float
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
static
inline
void
PReluChannelWise
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluChannelWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
dims
.
d
[
0
],
spatial_size
);
}
static
inline
void
PReluElementWise
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluElementWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
static
inline
void
PReluScalar
(
cudaStream_t
stream
,
const
float
*
input
,
const
float
*
alpha
,
float
*
output
,
int
batch_size
,
const
nvinfer1
::
Dims
&
dims
)
{
size_t
unroll
=
batch_size
*
dims
.
d
[
0
];
size_t
spatial_size
=
dims
.
d
[
1
]
*
dims
.
d
[
2
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluScalarKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
nvinfer1
::
Dims
PReluPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputDims
,
int
nbInputs
)
{
...
...
@@ -110,19 +34,31 @@ nvinfer1::Dims PReluPlugin::getOutputDimensions(int index,
return
output_dims
;
}
int
PReluPlugin
::
enqueue
(
int
batch
S
ize
,
const
void
*
const
*
inputs
,
int
PReluPlugin
::
enqueue
(
int
batch
_s
ize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
// input dims is CHW.
const
auto
&
input_dims
=
this
->
getInputDims
(
0
);
const
float
*
input
=
reinterpret_cast
<
const
float
*>
(
inputs
[
0
]);
const
float
*
alpha
=
reinterpret_cast
<
const
float
*>
(
alpha_
.
get
().
values
);
float
*
output
=
reinterpret_cast
<
float
**>
(
outputs
)[
0
];
std
::
vector
<
int
>
input_shape
;
input_shape
.
push_back
(
batch_size
);
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
if
(
mode_
==
"channel"
)
{
PReluChannelWise
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
operators
::
math
::
PreluChannelWiseDirectCUDAFunctor
<
float
>
prelu_channel_wise
;
prelu_channel_wise
(
stream
,
input
,
alpha
,
output
,
input_shape
);
}
else
if
(
mode_
==
"element"
)
{
PReluElementWise
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
operators
::
math
::
PreluElementWiseDirectCUDAFunctor
<
float
>
prelu_element_wise
;
prelu_element_wise
(
stream
,
input
,
alpha
,
output
,
input_shape
);
}
else
{
PReluScalar
(
stream
,
input
,
alpha
,
output
,
batchSize
,
input_dims
);
operators
::
math
::
PreluScalarDirectCUDAFunctor
<
float
>
prelu_scalar
;
prelu_scalar
(
stream
,
input
,
alpha
,
output
,
input_shape
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
fab0ee87
...
...
@@ -71,7 +71,7 @@ endif()
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions
)
if
(
WITH_GPU
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv
prelu
)
endif
()
# FIXME(typhoonzero): operator deps may not needed.
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
fab0ee87
...
...
@@ -491,8 +491,12 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
conv2d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv2d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/conv_op.cc
浏览文件 @
fab0ee87
...
...
@@ -74,6 +74,8 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework
::
OpKernelType
ConvOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
...
...
@@ -89,6 +91,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
kConvMKLDNNFP32
;
}
#endif
...
...
@@ -105,7 +108,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
);
library
,
customized_type_value
);
}
void
Conv2DOpMaker
::
Make
()
{
...
...
@@ -342,6 +345,8 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework
::
OpKernelType
ConvOpGrad
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
...
...
@@ -357,12 +362,13 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
customized_type_value
=
kConvMKLDNNFP32
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
ctx
.
GetPlace
(),
layout_
,
library_
);
layout_
,
library_
,
customized_type_value
);
}
}
// namespace operators
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
fab0ee87
...
...
@@ -27,6 +27,8 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
constexpr
int
kConvMKLDNNFP32
=
1
;
constexpr
int
kConvMKLDNNINT8
=
2
;
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
...
...
paddle/fluid/operators/cudnn_lstm_op.cu.cc
浏览文件 @
fab0ee87
...
...
@@ -177,11 +177,19 @@ struct CudnnRNNCache {
seed_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateRNNDescriptor
(
&
rnn_desc_
));
#if CUDNN_VERSION >= 6000
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetRNNDescriptor_v6
(
handle
,
rnn_desc_
,
hidden_size_
,
num_layers_
,
dropout_desc_
,
CUDNN_LINEAR_INPUT
,
is_bidirec_
?
CUDNN_BIDIRECTIONAL
:
CUDNN_UNIDIRECTIONAL
,
CUDNN_LSTM
,
CUDNN_RNN_ALGO_STANDARD
,
CUDNN_DATA_FLOAT
));
#else
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetRNNDescriptor
(
rnn_desc_
,
hidden_size_
,
num_layers_
,
dropout_desc_
,
CUDNN_LINEAR_INPUT
,
is_bidirec_
?
CUDNN_BIDIRECTIONAL
:
CUDNN_UNIDIRECTIONAL
,
CUDNN_LSTM
,
CUDNN_DATA_FLOAT
));
#endif
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateFilterDescriptor
(
&
w_desc_
));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnCreateFilterDescriptor
(
&
dw_desc_
));
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
fab0ee87
...
...
@@ -150,14 +150,14 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad should not be null."
);
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sparse"
))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
protected:
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
fab0ee87
...
...
@@ -185,7 +185,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
// Build a map of id -> row_index to speed up finding the index of one id
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
.
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
framework
::
DDim
temp_dim
(
w
.
dims
());
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
fab0ee87
...
...
@@ -59,6 +59,7 @@ math_library(matrix_bit_code)
math_library
(
unpooling
)
math_library
(
vol2col
)
math_library
(
prelu
)
cc_test
(
math_function_test SRCS math_function_test.cc DEPS math_function
)
cc_test
(
selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selected_rows_functor
)
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
fab0ee87
...
...
@@ -89,6 +89,8 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
auto
blas
=
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
...
...
@@ -99,13 +101,12 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
const
T
*
input_row
=
input_value
+
input_width
*
i
;
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
const
T
*
weight_row
=
weight_value
+
weight_width
*
index
;
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
input_value
[
input_width
*
i
+
k
];
}
sum
=
blas
.
DOT
(
input_width
,
weight_row
,
input_row
);
tmat_value
[
i
*
tmat_width
+
j
]
+=
sum
;
}
}
...
...
@@ -115,6 +116,8 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
)
{
auto
blas
=
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
...
...
@@ -122,16 +125,25 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
std
::
unordered_map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
const
T
*>>>
ops
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
const
T
*
input_value_row
=
input_value
+
input_width
*
i
;
const
T
*
tmat_row
=
tmat_value
+
i
*
tmat_width
;
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_value
[
weight_width
*
index
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
input_value
[
input_width
*
i
+
k
];
}
ops
[
code
->
calc_index
(
j
)].
emplace_back
(
tmat_row
[
j
],
input_value_row
);
}
}
for
(
auto
&
op
:
ops
)
{
auto
&
op_in_row
=
op
.
second
;
for
(
auto
&
pair
:
op_in_row
)
{
auto
&
scale
=
pair
.
first
;
auto
*
input_row
=
pair
.
second
;
T
*
weight_row
=
weight_value
+
op
.
first
*
weight_width
;
blas
.
AXPY
(
input_width
,
scale
,
input_row
,
weight_row
);
}
}
}
...
...
@@ -140,6 +152,8 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
weight
,
const
framework
::
Tensor
&
input
)
{
auto
blas
=
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
...
...
@@ -147,17 +161,28 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
->
mutable_value
()
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
std
::
unordered_map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
const
T
*>>>
ops
;
ops
.
reserve
(
weight
->
rows
().
size
());
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
const
T
*
input_value_row
=
input_value
+
input_width
*
i
;
const
T
*
tmat_row
=
tmat_value
+
i
*
tmat_width
;
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
int64_t
row_index
=
weight
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
weight_value
[
row_index
*
weight_width
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
input_value
[
input_width
*
i
+
k
];
}
ops
[
code
->
calc_index
(
j
)].
emplace_back
(
tmat_row
[
j
],
input_value_row
);
}
}
for
(
auto
&
row
:
weight
->
rows
())
{
auto
&
op_in_row
=
ops
[
row
];
for
(
auto
&
pair
:
op_in_row
)
{
auto
&
scale
=
pair
.
first
;
auto
*
input_row
=
pair
.
second
;
blas
.
AXPY
(
input_width
,
scale
,
input_row
,
weight_value
);
}
weight_value
+=
weight_width
;
}
}
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
fab0ee87
...
...
@@ -13,10 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
#if defined(_WIN32)
...
...
paddle/fluid/operators/math/prelu.cu
0 → 100644
浏览文件 @
fab0ee87
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/prelu.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
static
const
int
CUDA_NUM_THREADS
=
1024
;
static
const
int
CUDA_MAX_NUM_BLOCKS
=
65535
;
inline
static
int
GET_NUM_BLOCKS
(
const
int
N
)
{
return
(
N
+
CUDA_NUM_THREADS
-
1
)
/
CUDA_NUM_THREADS
;
}
template
<
typename
T
>
__global__
void
PReluChannelWiseKernel
(
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
int
channel
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
T
*
in
=
input
+
offset
;
T
*
out
=
output
+
offset
;
T
scale
=
alpha
[
blockIdx
.
x
%
channel
];
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
template
<
typename
T
>
__global__
void
PReluElementWiseKernel
(
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
T
*
in
=
input
+
offset
;
const
T
*
scale
=
alpha
+
offset
;
T
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
[
i
]
*
x
;
}
}
template
<
typename
T
>
__global__
void
PReluScalarKernel
(
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
size_t
spatial_size
)
{
size_t
offset
=
blockIdx
.
x
*
spatial_size
;
const
T
*
in
=
input
+
offset
;
T
scale
=
*
alpha
;
T
*
out
=
output
+
offset
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
spatial_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in
[
i
];
out
[
i
]
=
(
x
>
0
)
?
x
:
scale
*
x
;
}
}
template
<
typename
T
>
static
inline
void
PReluChannelWise
(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluChannelWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
input_shape
[
1
],
spatial_size
);
}
template
<
typename
T
>
static
inline
void
PReluElementWise
(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluElementWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
template
<
typename
T
>
static
inline
void
PReluScalar
(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluScalarKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
template
<
typename
T
>
void
PreluChannelWiseDirectCUDAFunctor
<
T
>::
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluChannelWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
input_shape
[
1
],
spatial_size
);
}
template
<
typename
T
>
void
PreluElementWiseDirectCUDAFunctor
<
T
>::
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluElementWiseKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
template
<
typename
T
>
void
PreluScalarDirectCUDAFunctor
<
T
>::
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
)
{
size_t
unroll
=
input_shape
[
0
]
*
input_shape
[
1
];
size_t
spatial_size
=
input_shape
[
2
]
*
input_shape
[
3
];
CHECK_LT
(
unroll
,
CUDA_MAX_NUM_BLOCKS
);
PReluScalarKernel
<<<
unroll
,
CUDA_NUM_THREADS
,
0
,
stream
>>>
(
input
,
alpha
,
output
,
spatial_size
);
}
template
class
PreluChannelWiseDirectCUDAFunctor
<
float
>;
template
class
PreluChannelWiseDirectCUDAFunctor
<
double
>;
template
class
PreluElementWiseDirectCUDAFunctor
<
float
>;
template
class
PreluElementWiseDirectCUDAFunctor
<
double
>;
template
class
PreluScalarDirectCUDAFunctor
<
float
>;
template
class
PreluScalarDirectCUDAFunctor
<
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/prelu.h
0 → 100644
浏览文件 @
fab0ee87
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
PreluChannelWiseDirectCUDAFunctor
{
public:
void
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
);
};
template
<
typename
T
>
class
PreluElementWiseDirectCUDAFunctor
{
public:
void
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
);
};
template
<
typename
T
>
class
PreluScalarDirectCUDAFunctor
{
public:
void
operator
()(
cudaStream_t
stream
,
const
T
*
input
,
const
T
*
alpha
,
T
*
output
,
std
::
vector
<
int
>
input_shape
);
};
#endif
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/prelu_op.cc
浏览文件 @
fab0ee87
...
...
@@ -58,7 +58,7 @@ class PReluOp : public framework::OperatorWithKernel {
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
platform
::
CPUPlace
());
ctx
.
device_context
());
}
};
...
...
paddle/fluid/operators/prelu_op.cu
0 → 100644
浏览文件 @
fab0ee87
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/prelu.h"
#include "paddle/fluid/operators/prelu_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
CUDAPReluKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
alpha
=
context
.
Input
<
Tensor
>
(
"Alpha"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
x_ptr
=
x
->
data
<
T
>
();
T
*
o_ptr
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
alpha_ptr
=
alpha
->
data
<
T
>
();
auto
&
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
int
numel
=
x
->
numel
();
auto
dim
=
x
->
dims
();
std
::
vector
<
int
>
input_shape
=
framework
::
vectorize2int
(
dim
);
if
(
mode
==
"channel"
)
{
math
::
PreluChannelWiseDirectCUDAFunctor
<
T
>
prelu_channel_wise
;
prelu_channel_wise
(
context
.
cuda_device_context
().
stream
(),
x_ptr
,
alpha_ptr
,
o_ptr
,
input_shape
);
}
else
if
(
mode
==
"element"
)
{
math
::
PreluElementWiseDirectCUDAFunctor
<
T
>
prelu_element_wise
;
prelu_element_wise
(
context
.
cuda_device_context
().
stream
(),
x_ptr
,
alpha_ptr
,
o_ptr
,
input_shape
);
}
else
{
math
::
PreluScalarDirectCUDAFunctor
<
T
>
prelu_scalar
;
prelu_scalar
(
context
.
cuda_device_context
().
stream
(),
x_ptr
,
alpha_ptr
,
o_ptr
,
input_shape
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
prelu
,
ops
::
CUDAPReluKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
CUDAPReluKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
fab0ee87
...
...
@@ -125,8 +125,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
__macro(cudnnRNNBackwardWeights); \
__macro(cudnnRNNForwardInference); \
__macro(cudnnDestroyDropoutDescriptor); \
__macro(cudnnDestroyRNNDescriptor); \
__macro(cudnnSetRNNDescriptor_v6);
__macro(cudnnDestroyRNNDescriptor);
CUDNN_DNN_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
...
...
@@ -165,6 +164,12 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R4(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
CUDNN_DNN_ROUTINE_EACH_R5
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#endif
// APIs in R6
#if CUDNN_VERSION >= 6000
#define CUDNN_DNN_ROUTINE_EACH_R6(__macro) __macro(cudnnSetRNNDescriptor_v6);
CUDNN_DNN_ROUTINE_EACH_R6
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#endif
#if CUDNN_VERSION >= 7001
#define CUDNN_DNN_ROUTINE_EACH_R7(__macro) \
__macro(cudnnSetConvolutionGroupCount); \
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
fab0ee87
...
...
@@ -442,8 +442,6 @@ EOF
make
install
-j
8
if
[
"
$1
"
==
"cp27-cp27m"
]
;
then
pip
install
--user
${
INSTALL_PREFIX
:-
/paddle/build
}
/opt/paddle/share/wheels/
*
.whl
set
-e
python
-c
"import paddle.fluid"
elif
[
"
$1
"
==
"cp35-cp35m"
]
;
then
pip3.5
install
--user
${
INSTALL_PREFIX
:-
/paddle/build
}
/opt/paddle/share/wheels/
*
.whl
elif
[
"
$1
"
==
"cp36-cp36m"
]
;
then
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录