Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c315339e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“13f440997200cef17a2e7315a31bfb2c4fe9bc11”上不存在“paddle/phi/kernels/impl/slice_kernel_impl.h”
提交
c315339e
编写于
10月 19, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update
1. Add init_program to hold initializers 2. bug fix
上级
41bb70e9
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
76 addition
and
47 deletion
+76
-47
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+4
-4
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+14
-18
python/paddle/v2/framework/layer_helper.py
python/paddle/v2/framework/layer_helper.py
+16
-6
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+8
-4
python/paddle/v2/framework/tests/test_fit_a_line.py
python/paddle/v2/framework/tests/test_fit_a_line.py
+34
-15
未找到文件。
paddle/operators/uniform_random_op.cc
浏览文件 @
c315339e
...
...
@@ -53,10 +53,10 @@ class UniformRandomOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
auto
&
dims
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"dims
"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape
"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
dims
.
size
());
for
(
auto
dim
:
dims
)
{
temp
.
reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
temp
.
push_back
(
static_cast
<
int64_t
>
(
dim
));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
temp
));
...
...
@@ -78,7 +78,7 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(Uniform random operator.
Used to initialize tensor with uniform random generator.
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"
dims
"
,
"the dimension of random tensor"
);
AddAttr
<
std
::
vector
<
int
>>
(
"
shape
"
,
"the dimension of random tensor"
);
AddAttr
<
float
>
(
"min"
,
"Minimum value of uniform random"
).
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"Maximun value of uniform random"
).
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
...
...
python/paddle/v2/framework/framework.py
浏览文件 @
c315339e
...
...
@@ -343,6 +343,8 @@ class Block(object):
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
if
'init_attr'
in
kwargs
:
self
.
_prepend_initialize_ops_
(
param
,
kwargs
[
'init_attr'
])
return
param
def
append_op
(
self
,
*
args
,
**
kwargs
):
...
...
@@ -401,6 +403,17 @@ class Block(object):
for
index
in
range
(
len
(
self
.
ops
)):
assert
self
.
ops
[
index
].
desc
==
ops_in_cpp
[
index
]
def
_prepend_initialize_ops_
(
self
,
param
,
init_attr
):
op_type
=
init_attr
[
'type'
]
init_attr
[
'shape'
]
=
param
.
shape
init_attr
[
'data_type'
]
=
int
(
param
.
data_type
)
op
=
self
.
prepend_op
(
type
=
op_type
,
inputs
=
None
,
outputs
=
{
'Out'
:
[
param
]},
attrs
=
init_attr
)
param
.
op
=
op
class
Program
(
object
):
def
__init__
(
self
):
...
...
@@ -475,27 +488,10 @@ class Parameter(Variable):
Variable
.
__init__
(
self
,
block
,
persistable
=
True
,
shape
=
shape
,
dtype
=
dtype
,
**
kwargs
)
self
.
trainable
=
kwargs
.
get
(
'trainable'
,
True
)
self
.
init_attr
=
kwargs
.
get
(
'initialize_attr'
,
{
'type'
:
'uniform_random'
,
'min'
:
-
1.0
,
'max'
:
1.0
})
self
.
optimize_attr
=
kwargs
.
get
(
'optimize_attr'
,
{
'learning_rate'
:
1.0
})
self
.
_append_initialize_ops_
()
def
_append_initialize_ops_
(
self
):
attr
=
self
.
init_attr
op_type
=
attr
.
pop
(
'type'
,
None
)
block
=
self
.
block
assert
isinstance
(
block
,
Block
)
shape
=
self
.
shape
attr
[
'dims'
]
=
shape
attr
[
'data_type'
]
=
int
(
self
.
data_type
)
op
=
block
.
prepend_op
(
type
=
op_type
,
inputs
=
None
,
outputs
=
{
'Out'
:
[
self
]},
attrs
=
attr
)
self
.
op
=
op
# program is a global instance.
g_program
=
Program
()
g_init_program
=
Program
()
python/paddle/v2/framework/layer_helper.py
浏览文件 @
c315339e
from
paddle.v2.framework.framework
import
Variable
,
OpProtoHolder
,
g_program
from
paddle.v2.framework.framework
import
Variable
,
OpProtoHolder
,
g_program
,
g_init_program
import
paddle.v2.framework.core
as
core
import
copy
import
itertools
...
...
@@ -29,6 +29,14 @@ class LayerHelper(object):
else
:
return
prog
@
property
def
init_program
(
self
):
prog
=
self
.
kwargs
.
get
(
'init_program'
,
None
)
if
prog
is
None
:
return
g_init_program
else
:
return
prog
def
append_op
(
self
,
*
args
,
**
kwargs
):
return
self
.
program
.
current_block
().
append_op
(
*
args
,
**
kwargs
)
...
...
@@ -73,9 +81,9 @@ class LayerHelper(object):
'name'
:
None
,
'init_attr'
:
{
'type'
:
'fill_constant'
,
'value'
:
0.0
,
'shape'
:
shape
,
'dataType'
:
dtype
'value'
:
0.0
#
'shape': shape,
#
'dataType': dtype
}
}
return
bias_attr
...
...
@@ -113,11 +121,13 @@ class LayerHelper(object):
def
create_parameter
(
self
,
attr
,
shape
,
dtype
,
suffix
=
'w'
):
if
attr
[
'name'
]
is
None
:
attr
[
'name'
]
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
return
self
.
program
.
global_block
().
create_parameter
(
self
.
init_
program
.
global_block
().
create_parameter
(
name
=
attr
[
'name'
],
dtype
=
dtype
,
shape
=
shape
,
initialize_attr
=
attr
[
'init_attr'
])
init_attr
=
attr
[
'init_attr'
])
return
self
.
program
.
global_block
().
create_parameter
(
name
=
attr
[
'name'
],
dtype
=
dtype
,
shape
=
shape
)
def
create_tmp_variable
(
self
,
dtype
):
return
self
.
program
.
current_block
().
create_var
(
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
c315339e
...
...
@@ -13,7 +13,8 @@ def fc(input,
name
=
None
,
act
=
None
,
num_flatten_dims
=
1
,
program
=
None
):
program
=
None
,
init_program
=
None
):
# create helper
helper
=
LayerHelper
(
'fc'
,
**
locals
())
...
...
@@ -59,7 +60,8 @@ def data(name,
data_type
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
append_batch_size
=
True
,
program
=
None
):
program
=
None
,
init_program
=
None
):
helper
=
LayerHelper
(
'data'
,
**
locals
())
if
append_batch_size
:
shape
=
[
-
1
]
+
shape
# append batch size as -1
...
...
@@ -160,7 +162,8 @@ def conv2d(input,
padding
=
None
,
bias_attr
=
None
,
param_attr
=
None
,
program
=
None
):
program
=
None
,
init_program
=
None
):
helper
=
LayerHelper
(
'conv2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -207,7 +210,8 @@ def pool2d(input,
pool_stride
=
[
1
,
1
],
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
program
=
None
):
program
=
None
,
init_program
=
None
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
...
...
python/paddle/v2/framework/tests/test_fit_a_line.py
浏览文件 @
c315339e
...
...
@@ -8,24 +8,35 @@ from paddle.v2.framework.executor import Executor
import
numpy
as
np
init_program
=
Program
()
program
=
Program
()
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
)
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
y_predict
=
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
,
program
=
program
,
init_program
=
init_program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
cost
=
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
,
program
=
program
,
init_program
=
init_program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
,
init_program
=
init_program
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.0
1
)
sgd_optimizer
=
optimizer
.
SGDOptimizer
(
learning_rate
=
0.0
05
)
opts
=
sgd_optimizer
.
minimize
(
avg_cost
)
print
str
(
program
)
import
pdb
pdb
.
set_trace
()
BATCH_SIZE
=
100
BATCH_SIZE
=
10
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -35,12 +46,15 @@ train_reader = paddle.batch(
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
PASS_NUM
=
200
exe
.
run
(
init_program
,
feed
=
{},
fetch_list
=
[
init_program
.
global_block
().
var
(
'fc_0.w_1'
)])
PASS_NUM
=
10
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"float32"
)
#y_data = np.expand_dims(y_data, axis=1)
tensor_x
=
core
.
LoDTensor
()
tensor_x
.
set
(
x_data
,
place
)
...
...
@@ -50,6 +64,11 @@ for pass_id in range(PASS_NUM):
outs
=
exe
.
run
(
program
,
feed
=
{
'x'
:
tensor_x
,
'y'
:
tensor_y
},
fetch_list
=
[
avg_cost
])
fetch_list
=
[
avg_cost
,
program
.
global_block
().
var
(
'fc_0.w_1'
),
program
.
global_block
().
var
(
'fc_0.w_1@GRAD'
)
])
out
=
np
.
array
(
outs
[
0
])
w
=
np
.
array
(
outs
[
1
])
wg
=
np
.
array
(
outs
[
2
])
print
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录