Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
41bb70e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“24509f4af942bb250564756ad636691c7921e1df”上不存在“python/paddle/v2/fluid/tests/unittests/test_program.py”
提交
41bb70e9
编写于
10月 19, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into HEAD
上级
ca44c27e
1f1be6c9
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
146 addition
and
86 deletion
+146
-86
paddle/operators/adam_op.cc
paddle/operators/adam_op.cc
+1
-11
paddle/operators/adam_op.h
paddle/operators/adam_op.h
+2
-11
paddle/operators/adamax_op.cc
paddle/operators/adamax_op.cc
+1
-6
paddle/operators/adamax_op.h
paddle/operators/adamax_op.h
+1
-6
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+3
-1
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+49
-3
python/paddle/v2/framework/nets.py
python/paddle/v2/framework/nets.py
+24
-0
python/paddle/v2/framework/tests/test_adam_op.py
python/paddle/v2/framework/tests/test_adam_op.py
+12
-18
python/paddle/v2/framework/tests/test_adamax_op.py
python/paddle/v2/framework/tests/test_adamax_op.py
+13
-19
python/paddle/v2/framework/tests/test_layers.py
python/paddle/v2/framework/tests/test_layers.py
+40
-11
未找到文件。
paddle/operators/adam_op.cc
浏览文件 @
41bb70e9
...
...
@@ -43,10 +43,6 @@ class AdamOp : public framework::OperatorWithKernel {
"Output(Moment1Out) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Moment2Out"
),
"Output(Moment2Out) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Beta1PowOut"
),
"Output(Beta1PowOut) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Beta2PowOut"
),
"Output(Beta2PowOut) of AdamOp should not be null."
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
...
...
@@ -72,8 +68,6 @@ class AdamOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment2Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Beta1PowOut"
,
beta1_pow_dims
);
ctx
->
SetOutputDim
(
"Beta2PowOut"
,
beta2_pow_dims
);
}
};
...
...
@@ -92,8 +86,6 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddOutput
(
"Moment1Out"
,
"(Tensor) Output first moment"
);
AddOutput
(
"Moment2Out"
,
"(Tensor) Output second moment"
);
AddOutput
(
"Beta1PowOut"
,
"(Tensor) Output beta1 power accumulator"
);
AddOutput
(
"Beta2PowOut"
,
"(Tensor) Output beta2 power accumulator"
);
AddAttr
<
float
>
(
"beta1"
,
"(float, default 0.9) "
...
...
@@ -121,10 +113,8 @@ Adam updates:
moment1_out = beta1 * moment1 + (1 − beta1) * grad
moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad
beta1_pow_out = beta1_pow * beta1
beta2_pow_out = beta2_pow * beta2
learning_rate_t = learning_rate_t *
sqrt(1 - beta2_pow
_out) / (1 - beta1_pow_out
)
sqrt(1 - beta2_pow
) / (1 - beta1_pow
)
param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon)
References:
...
...
paddle/operators/adam_op.h
浏览文件 @
41bb70e9
...
...
@@ -26,14 +26,10 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment1_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Moment1Out"
);
auto
moment2_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Moment2Out"
);
auto
beta1_pow_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Beta1PowOut"
);
auto
beta2_pow_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Beta2PowOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment1_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment2_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta1_pow_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta2_pow_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
beta1
=
ctx
.
Attr
<
float
>
(
"beta1"
);
float
beta2
=
ctx
.
Attr
<
float
>
(
"beta2"
);
...
...
@@ -56,18 +52,13 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment1_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment1_out_tensor
);
auto
moment2_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment2_out_tensor
);
auto
beta1_pow_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
beta1_pow_out_tensor
);
auto
beta2_pow_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
beta2_pow_out_tensor
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
moment1_out
.
device
(
place
)
=
beta1
*
moment1
+
(
1
-
beta1
)
*
grad
;
moment2_out
.
device
(
place
)
=
beta2
*
moment2
+
(
1
-
beta2
)
*
grad
.
square
();
beta1_pow_out
.
device
(
place
)
=
beta1_pow
*
beta1
;
beta2_pow_out
.
device
(
place
)
=
beta2_pow
*
beta2
;
// All of these are tensors of 1 element
auto
lr_t
=
lr
*
(
1
-
beta2_pow
_out
).
sqrt
()
/
(
1
-
beta1_pow_out
);
auto
lr_t
=
lr
*
(
1
-
beta2_pow
).
sqrt
()
/
(
1
-
beta1_pow
);
// Eigen does not support automatic broadcast
// Get dimensions of moment vector to broadcast lr_t
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment1_out_tensor
->
numel
());
...
...
paddle/operators/adamax_op.cc
浏览文件 @
41bb70e9
...
...
@@ -41,8 +41,6 @@ class AdamaxOp : public framework::OperatorWithKernel {
"Output(MomentOut) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"InfNormOut"
),
"Output(InfNormOut) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Beta1PowOut"
),
"Output(Beta1PowOut) of AdamaxOp should not be null."
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
...
...
@@ -64,7 +62,6 @@ class AdamaxOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"InfNormOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Beta1PowOut"
,
beta1_pow_dims
);
}
};
...
...
@@ -86,7 +83,6 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"InfNormOut"
,
"(Tensor) "
"Output exponentially weighted infinity norm"
);
AddOutput
(
"Beta1PowOut"
,
"(Tensor) Output beta1 power accumulator"
);
AddAttr
<
float
>
(
"beta1"
,
"(float, default 0.9) "
...
...
@@ -113,8 +109,7 @@ Adamax updates:
moment_out = beta1 * moment + (1 - beta1) * grad
inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad))
beta1_pow_out = beta1_pow * beta1
learning_rate_t = learning_rate/(1 - beta1_pow_out)
learning_rate_t = learning_rate/(1 - beta1_pow)
param_out = param - learning_rate_t * moment_out/inf_norm_out
The original paper does not have an epsilon attribute.
...
...
paddle/operators/adamax_op.h
浏览文件 @
41bb70e9
...
...
@@ -26,12 +26,10 @@ class AdamaxOpKernel : public framework::OpKernel<T> {
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
auto
beta1_pow_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Beta1PowOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
inf_norm_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta1_pow_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
beta1
=
ctx
.
Attr
<
float
>
(
"beta1"
);
float
beta2
=
ctx
.
Attr
<
float
>
(
"beta2"
);
...
...
@@ -53,15 +51,12 @@ class AdamaxOpKernel : public framework::OpKernel<T> {
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
inf_norm_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
inf_norm_out_tensor
);
auto
beta1_pow_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
beta1_pow_out_tensor
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
moment_out
.
device
(
place
)
=
beta1
*
moment
+
(
1
-
beta1
)
*
grad
;
inf_norm_out
.
device
(
place
)
=
grad
.
abs
().
cwiseMax
((
beta2
*
inf_norm
)
+
epsilon
);
beta1_pow_out
.
device
(
place
)
=
beta1_pow
*
beta1
;
auto
lr_t
=
lr
/
(
1
-
beta1_pow_out
);
auto
lr_t
=
lr
/
(
1
-
beta1_pow
);
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
param_out
.
device
(
place
)
=
param
-
lr_t
.
broadcast
(
m_dsize
)
*
(
moment_out
/
inf_norm_out
);
...
...
python/paddle/v2/framework/framework.py
浏览文件 @
41bb70e9
...
...
@@ -432,11 +432,13 @@ class Program(object):
def
current_block
(
self
):
return
self
.
blocks
[
self
.
current_block_idx
]
def
append_backward
(
self
,
target
,
no_grad_set
):
def
append_backward
(
self
,
target
,
no_grad_set
=
None
):
"""
return map(param_name -> (grad_name, block_index, op_index))
"""
assert
isinstance
(
target
,
Variable
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
param_to_grad_info
=
self
.
desc
.
append_backward
(
target
.
desc
,
no_grad_set
)
self
.
sync_with_cpp
()
return
param_to_grad_info
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
41bb70e9
...
...
@@ -3,7 +3,7 @@ import paddle.v2.framework.core as core
from
paddle.v2.framework.framework
import
OpProtoHolder
,
Variable
import
re
__all__
=
[
'fc'
,
'data'
,
'cross_entropy'
,
'conv2d'
]
__all__
=
[
'fc'
,
'data'
,
'cross_entropy'
,
'conv2d'
,
'pool2d'
]
def
fc
(
input
,
...
...
@@ -35,7 +35,10 @@ def fc(input,
"Y"
:
w
,
},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
'x_num_col_dims'
:
num_flatten_dims
})
attrs
=
{
'x_num_col_dims'
:
num_flatten_dims
,
'y_num_col_dims'
:
len
(
input_shape
)
-
num_flatten_dims
})
mul_results
.
append
(
tmp
)
# sum
...
...
@@ -115,7 +118,6 @@ def _create_op_func_(op_type):
_create_op_func_
(
'mean'
)
_create_op_func_
(
'mul'
)
_create_op_func_
(
'pool2d'
)
def
cross_entropy
(
input
,
label
,
**
kwargs
):
...
...
@@ -170,6 +172,13 @@ def conv2d(input,
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
if
isinstance
(
filter_size
,
int
):
filter_size
=
[
filter_size
,
filter_size
]
if
isinstance
(
stride
,
int
):
stride
=
[
stride
,
stride
]
if
isinstance
(
padding
,
int
):
padding
=
[
padding
,
padding
]
input_shape
=
input
.
shape
filter_shape
=
[
num_filters
,
num_filter_channels
]
+
filter_size
filter
=
helper
.
create_parameter
(
...
...
@@ -190,3 +199,40 @@ def conv2d(input,
pre_act
=
helper
.
append_bias_op
(
pre_bias
)
return
helper
.
append_activation
(
pre_act
)
def
pool2d
(
input
,
pool_size
,
pool_type
,
pool_stride
=
[
1
,
1
],
pool_padding
=
[
0
,
0
],
global_pooling
=
False
,
program
=
None
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
))
if
isinstance
(
pool_size
,
int
):
pool_size
=
[
pool_size
,
pool_size
]
if
isinstance
(
pool_stride
,
int
):
pool_stride
=
[
pool_stride
,
pool_stride
]
if
isinstance
(
pool_padding
,
int
):
pool_padding
=
[
pool_padding
,
pool_padding
]
helper
=
LayerHelper
(
'conv2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"pool2d"
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"global_pooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
})
return
pool_out
python/paddle/v2/framework/nets.py
0 → 100644
浏览文件 @
41bb70e9
import
paddle.v2.framework.layers
as
layers
def
simple_img_conv_pool
(
input
,
filter_size
,
num_filters
,
pool_size
,
pool_stride
,
act
,
program
=
None
):
conv_out
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
act
=
act
,
program
=
program
)
pool_out
=
layers
.
pool2d
(
input
=
conv_out
,
pool_size
=
pool_size
,
pool_type
=
'max'
,
pool_stride
=
pool_stride
,
program
=
program
)
return
pool_out
python/paddle/v2/framework/tests/test_adam_op.py
浏览文件 @
41bb70e9
...
...
@@ -33,14 +33,12 @@ class TestAdamOp1(OpTest):
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
\
beta2_pow
_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
param_out
,
moment1_out
,
\
moment2
_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
,
'ParamOut'
:
param_out
}
...
...
@@ -78,14 +76,12 @@ class TestAdamOp2(OpTest):
attributes
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
\
beta2_pow
_out
=
adam_step
(
self
.
inputs
,
attributes
)
param_out
,
moment1_out
,
\
moment2
_out
=
adam_step
(
self
.
inputs
,
attributes
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
,
'ParamOut'
:
param_out
}
...
...
@@ -127,14 +123,12 @@ class TestAdamOpMultipleSteps(OpTest):
def
test_check_output
(
self
):
for
_
in
range
(
self
.
num_steps
):
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
\
beta2_pow
_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
param_out
,
moment1_out
,
\
moment2
_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
,
'ParamOut'
:
param_out
}
...
...
@@ -145,8 +139,10 @@ class TestAdamOpMultipleSteps(OpTest):
self
.
inputs
[
'Param'
]
=
param_out
self
.
inputs
[
'Moment1'
]
=
moment1_out
self
.
inputs
[
'Moment2'
]
=
moment2_out
self
.
inputs
[
'Beta1Pow'
]
=
beta1_pow_out
self
.
inputs
[
'Beta2Pow'
]
=
beta2_pow_out
# Update powers of Beta1 and Beta2 for next time step
self
.
inputs
[
'Beta1Pow'
]
*=
self
.
attrs
[
'beta1'
]
self
.
inputs
[
'Beta2Pow'
]
*=
self
.
attrs
[
'beta1'
]
# Randomize gradient for next step
self
.
inputs
[
'Grad'
]
=
np
.
random
.
uniform
(
...
...
@@ -175,11 +171,9 @@ def adam_step(inputs, attributes):
moment1_out
=
beta1
*
moment1
+
(
1
-
beta1
)
*
grad
moment2_out
=
beta2
*
moment2
+
(
1
-
beta2
)
*
np
.
square
(
grad
)
beta1_pow_out
=
beta1_pow
*
beta1
beta2_pow_out
=
beta2_pow
*
beta2
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow_out
)
/
(
1
-
beta1_pow_out
)
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
)
param_out
=
param
-
lr_t
*
(
moment1_out
/
(
np
.
sqrt
(
moment2_out
)
+
epsilon
))
return
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
beta2_pow_out
return
param_out
,
moment1_out
,
moment2_out
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_adamax_op.py
浏览文件 @
41bb70e9
...
...
@@ -31,14 +31,13 @@ class TestAdamaxOp1(OpTest):
self
.
attrs
=
{
'beta1'
:
beta1
,
'beta2'
:
beta2
,
'epsilon'
:
epsilon
}
param_out
,
moment_out
,
inf_norm_out
,
beta1_pow_out
=
adamax_step
(
self
.
inputs
,
self
.
attrs
)
param_out
,
moment_out
,
inf_norm_out
=
adamax_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'InfNormOut'
:
inf_norm_out
,
'Beta1PowOut'
:
beta1_pow_out
'InfNormOut'
:
inf_norm_out
}
def
test_check_output
(
self
):
...
...
@@ -73,14 +72,12 @@ class TestAdamaxOp2(OpTest):
}
attrs
=
{
'beta1'
:
beta1
,
'beta2'
:
beta2
,
'epsilon'
:
epsilon
}
param_out
,
moment_out
,
inf_norm_out
,
beta1_pow_out
=
adamax_step
(
self
.
inputs
,
attrs
)
param_out
,
moment_out
,
inf_norm_out
=
adamax_step
(
self
.
inputs
,
attrs
)
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'InfNormOut'
:
inf_norm_out
,
'Beta1PowOut'
:
beta1_pow_out
'InfNormOut'
:
inf_norm_out
}
def
test_check_output
(
self
):
...
...
@@ -117,19 +114,15 @@ class TestAdamaxOpMultipleSteps(OpTest):
self
.
attrs
=
{
'beta1'
:
beta1
,
'beta2'
:
beta2
,
'epsilon'
:
epsilon
}
param_out
,
moment_out
,
inf_norm_out
,
beta1_pow_out
=
adamax_step
(
self
.
inputs
,
self
.
attrs
)
def
test_check_output
(
self
):
for
_
in
range
(
self
.
num_steps
):
param_out
,
moment_out
,
inf_norm_out
,
beta1_pow_out
=
adamax_step
(
self
.
inputs
,
self
.
attrs
)
param_out
,
moment_out
,
inf_norm_out
=
adamax_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'InfNormOut'
:
inf_norm_out
,
'Beta1PowOut'
:
beta1_pow_out
'InfNormOut'
:
inf_norm_out
}
# Verify output for this step
...
...
@@ -139,7 +132,9 @@ class TestAdamaxOpMultipleSteps(OpTest):
self
.
inputs
[
'Param'
]
=
param_out
self
.
inputs
[
'Moment'
]
=
moment_out
self
.
inputs
[
'InfNorm'
]
=
inf_norm_out
self
.
inputs
[
'Beta1Pow'
]
=
beta1_pow_out
# Update Beta1 Power accumulator for next step
self
.
inputs
[
'Beta1Pow'
]
*=
self
.
attrs
[
'beta1'
]
# Randomize gradient for next step
self
.
inputs
[
'Grad'
]
=
np
.
random
.
uniform
(
...
...
@@ -167,11 +162,10 @@ def adamax_step(inputs, attributes):
moment_out
=
beta1
*
moment
+
(
1
-
beta1
)
*
grad
inf_norm_out
=
np
.
maximum
(
beta2
*
inf_norm
+
epsilon
,
np
.
abs
(
grad
))
beta1_pow_out
=
beta1_pow
*
beta1
lr_t
=
(
lr
/
(
1
-
beta1_pow_out
))
lr_t
=
(
lr
/
(
1
-
beta1_pow
))
param_out
=
param
-
lr_t
*
np
.
divide
(
moment_out
,
inf_norm_out
)
return
param_out
,
moment_out
,
inf_norm_out
,
beta1_pow_out
return
param_out
,
moment_out
,
inf_norm_out
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_layers.py
浏览文件 @
41bb70e9
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.nets
as
nets
from
paddle.v2.framework.framework
import
Program
,
g_program
import
paddle.v2.framework.core
as
core
import
unittest
...
...
@@ -18,7 +19,7 @@ class TestBook(unittest.TestCase):
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
program
.
append_backward
(
avg_cost
,
set
()
)
program
.
append_backward
(
avg_cost
)
print
str
(
program
)
def
test_recognize_digits_mlp
(
self
):
...
...
@@ -38,24 +39,52 @@ class TestBook(unittest.TestCase):
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
self
.
assertIsNotNone
(
avg_cost
)
#
print str(program)
print
str
(
program
)
def
test_simple_conv2d
(
self
):
pd
=
core
.
ProgramDesc
.
__create_program_desc__
()
program
=
Program
(
desc
=
pd
)
images
=
data_layer
(
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
program
=
program
)
conv2d_layer
(
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
program
=
program
)
#
print str(program)
print
str
(
program
)
def
test_
simple_conv2d
(
self
):
def
test_
recognize_digits_conv
(
self
):
program
=
Program
()
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'int32'
,
program
=
program
)
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
4
,
4
],
program
=
program
)
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
data_type
=
'float32'
,
program
=
program
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
data_type
=
'int32'
,
program
=
program
)
conv_pool_1
=
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
num_filters
=
2
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
conv_pool_2
=
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
4
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
program
=
program
)
predict
=
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
,
program
=
program
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
,
program
=
program
)
avg_cost
=
layers
.
mean
(
x
=
cost
,
program
=
program
)
program
.
append_backward
(
avg_cost
)
print
str
(
program
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录