Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c239f15a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c239f15a
编写于
4月 13, 2022
作者:
Z
zhiboniu
提交者:
GitHub
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
tensor fluid code transfer part2 (#41096)
上级
1e56ca8a
变更
11
展开全部
隐藏空白更改
内联
并排
Showing
11 changed file
with
1756 addition
and
111 deletion
+1756
-111
python/paddle/fft.py
python/paddle/fft.py
+2
-1
python/paddle/fluid/tests/unittests/test_crop_tensor_op.py
python/paddle/fluid/tests/unittests/test_crop_tensor_op.py
+9
-9
python/paddle/fluid/tests/unittests/test_slice_op.py
python/paddle/fluid/tests/unittests/test_slice_op.py
+4
-4
python/paddle/fluid/tests/unittests/test_strided_slice_op.py
python/paddle/fluid/tests/unittests/test_strided_slice_op.py
+4
-4
python/paddle/tensor/attribute.py
python/paddle/tensor/attribute.py
+110
-19
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+285
-18
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+28
-26
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+1311
-27
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+1
-1
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+1
-1
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+1
-1
未找到文件。
python/paddle/fft.py
浏览文件 @
c239f15a
...
@@ -15,7 +15,8 @@
...
@@ -15,7 +15,8 @@
from
typing
import
Sequence
from
typing
import
Sequence
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
from
.tensor.attribute
import
is_complex
,
is_floating_point
,
is_integer
,
_real_to_complex_dtype
,
_complex_to_real_dtype
from
.tensor.attribute
import
is_complex
,
is_floating_point
,
is_integer
from
.tensor.creation
import
_real_to_complex_dtype
,
_complex_to_real_dtype
from
.fluid.framework
import
_non_static_mode
from
.fluid.framework
import
_non_static_mode
from
.
import
_C_ops
from
.
import
_C_ops
from
.fluid.data_feeder
import
check_variable_and_dtype
from
.fluid.data_feeder
import
check_variable_and_dtype
...
...
python/paddle/fluid/tests/unittests/test_crop_tensor_op.py
浏览文件 @
c239f15a
...
@@ -17,6 +17,7 @@ from __future__ import print_function
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
...
@@ -225,31 +226,30 @@ class TestCropTensorException(unittest.TestCase):
...
@@ -225,31 +226,30 @@ class TestCropTensorException(unittest.TestCase):
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
1
],
dtype
=
'int32'
)
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
1
],
dtype
=
'int32'
)
def
attr_shape_type
():
def
attr_shape_type
():
out
=
fluid
.
layers
.
crop_tensor
(
input1
,
shape
=
3
)
out
=
paddle
.
crop
(
input1
,
shape
=
3
)
def
attr_shape_dtype
():
def
attr_shape_dtype
():
out
=
fluid
.
layers
.
crop_tensor
(
input1
,
shape
=
[
2
,
2.0
,
3
,
3
])
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
2.0
,
3
,
3
])
def
attr_shape_value1
():
def
attr_shape_value1
():
out
=
fluid
.
layers
.
crop_tensor
(
input1
,
shape
=
[
2
,
-
2
,
dim
,
3
])
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
-
2
,
dim
,
3
])
def
attr_shape_value2
():
def
attr_shape_value2
():
out
=
fluid
.
layers
.
crop_tensor
(
input1
,
shape
=
[
2
,
0
,
dim
,
3
])
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
0
,
dim
,
3
])
def
attr_offsets_type
():
def
attr_offsets_type
():
out
=
fluid
.
layers
.
crop_tensor
(
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
0
)
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
0
)
def
attr_offsets_dtype
():
def
attr_offsets_dtype
():
out
=
fluid
.
layers
.
crop_tensor
(
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
[
0
,
1.0
,
0
,
0
])
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
[
0
,
1.0
,
0
,
0
])
def
attr_offsets_value
():
def
attr_offsets_value
():
out
=
fluid
.
layers
.
crop_tensor
(
out
=
paddle
.
crop
(
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
[
0
,
-
1
,
offset
,
0
])
input1
,
shape
=
[
2
,
2
,
3
,
3
],
offsets
=
[
0
,
-
1
,
offset
,
0
])
def
input_dtype
():
def
input_dtype
():
out
=
fluid
.
layers
.
crop_tensor
(
input2
,
shape
=
[
2
,
2
,
3
,
3
])
out
=
paddle
.
crop
(
input2
,
shape
=
[
2
,
2
,
3
,
3
])
self
.
assertRaises
(
TypeError
,
attr_shape_type
)
self
.
assertRaises
(
TypeError
,
attr_shape_type
)
self
.
assertRaises
(
TypeError
,
attr_shape_dtype
)
self
.
assertRaises
(
TypeError
,
attr_shape_dtype
)
...
...
python/paddle/fluid/tests/unittests/test_slice_op.py
浏览文件 @
c239f15a
...
@@ -534,13 +534,13 @@ class TestSliceAPI(unittest.TestCase):
...
@@ -534,13 +534,13 @@ class TestSliceAPI(unittest.TestCase):
# value_int64 is greater than 2147483647 which is the max of int32
# value_int64 is greater than 2147483647 which is the max of int32
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
out_1
=
fluid
.
layers
.
slice
(
out_1
=
paddle
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
value_int64
,
100
,
-
1
])
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
value_int64
,
100
,
-
1
])
out_2
=
fluid
.
layers
.
slice
(
out_2
=
paddle
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
])
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
])
out_3
=
fluid
.
layers
.
slice
(
out_3
=
paddle
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
])
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
])
out_4
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
)
out_4
=
paddle
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
)
out_5
=
x
[
-
3
:
3
,
0
:
100
,
2
:
-
1
]
out_5
=
x
[
-
3
:
3
,
0
:
100
,
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
,
0
:
100
,
:,
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
,
0
:
100
,
:,
2
:
-
1
]
...
...
python/paddle/fluid/tests/unittests/test_strided_slice_op.py
浏览文件 @
c239f15a
...
@@ -534,25 +534,25 @@ class TestStridedSliceAPI(unittest.TestCase):
...
@@ -534,25 +534,25 @@ class TestStridedSliceAPI(unittest.TestCase):
shape
=
[
3
,
4
,
5
,
6
],
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
append_batch_size
=
False
,
dtype
=
"float64"
)
dtype
=
"float64"
)
out_1
=
fluid
.
layers
.
strided_slice
(
out_1
=
paddle
.
strided_slice
(
x
,
x
,
axes
=
[
0
,
1
,
2
],
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
strides
=
[
1
,
1
,
1
])
out_2
=
fluid
.
layers
.
strided_slice
(
out_2
=
paddle
.
strided_slice
(
x
,
x
,
axes
=
[
0
,
1
,
3
],
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
strides
=
[
1
,
1
,
1
])
out_3
=
fluid
.
layers
.
strided_slice
(
out_3
=
paddle
.
strided_slice
(
x
,
x
,
axes
=
[
0
,
1
,
3
],
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
],
ends
=
[
3
,
100
,
minus_1
],
strides
=
[
1
,
1
,
1
])
strides
=
[
1
,
1
,
1
])
out_4
=
fluid
.
layers
.
strided_slice
(
out_4
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
,
strides
=
strides
)
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
,
strides
=
strides
)
out_5
=
x
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
]
out_5
=
x
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
]
...
...
python/paddle/tensor/attribute.py
浏览文件 @
c239f15a
...
@@ -14,37 +14,128 @@
...
@@ -14,37 +14,128 @@
from
__future__
import
print_function
from
__future__
import
print_function
from
..framework
import
core
from
..framework
import
core
,
_non_static_mode
from
..f
luid.layer_helper
import
LayerHelper
from
..f
ramework
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
from
..fluid.data_feeder
import
check_variable_and_dtype
from
..fluid.data_feeder
import
check_type
from
.creation
import
assign
from
.creation
import
_complex_to_real_dtype
# TODO: define functions to get tensor attributes
# TODO: define functions to get tensor attributes
from
..fluid.layers
import
rank
# noqa: F401
from
..fluid.layers
import
shape
# noqa: F401
import
paddle
import
paddle
from
paddle
import
_C_ops
from
paddle
import
_C_ops
from
paddle
.static
import
Variable
from
.
.static
import
Variable
from
..fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
..fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
import
numpy
as
np
__all__
=
[]
__all__
=
[]
def
_complex_to_real_dtype
(
dtype
):
def
rank
(
input
):
if
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX64
:
"""
return
core
.
VarDesc
.
VarType
.
FP32
elif
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX128
:
The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
return
core
.
VarDesc
.
VarType
.
FP64
else
:
Args:
return
dtype
input (Tensor): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Returns:
Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor.
Examples:
.. code-block:: python
import paddle
input = paddle.rand((3, 100, 100))
rank = paddle.rank(input)
print(rank)
# 3
"""
check_type
(
input
,
'input'
,
(
Variable
),
'input'
)
ndims
=
len
(
input
.
shape
)
out
=
assign
(
np
.
array
(
ndims
,
'int32'
))
return
out
def
shape
(
input
):
"""
:alias_main: paddle.shape
:alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
:old_api: paddle.fluid.layers.shape
**Shape Layer**
Get the shape of the input.
.. code-block:: text
Case1:
Given N-D Tensor:
input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]
Then:
input.shape = [2, 4]
Case2:
Given SelectedRows:
input.rows = [0, 4, 19]
input.height = 20
input.value = [ [1, 2], [3, 4], [5, 6] ] # inner tensor
Then:
input.shape = [3, 2]
Args:
input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
If input variable is type of SelectedRows, returns the shape of it's inner tensor.
Returns:
Variable (Tensor): The shape of the input variable.
Examples:
.. code-block:: python
def
_real_to_complex_dtype
(
dtype
):
import paddle.fluid as fluid
if
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
import numpy as np
return
core
.
VarDesc
.
VarType
.
COMPLEX64
import paddle
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
paddle.enable_static()
return
core
.
VarDesc
.
VarType
.
COMPLEX128
else
:
inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
return
dtype
output = fluid.layers.shape(inputs)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.ones((3, 100, 100)).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([ 3, 100, 100], dtype=int32)]
"""
if
in_dygraph_mode
():
out
=
_C_ops
.
final_state_shape
(
input
)
out
.
stop_gradient
=
True
return
out
if
_in_legacy_dygraph
():
out
=
_C_ops
.
shape
(
input
)
out
.
stop_gradient
=
True
return
out
check_variable_and_dtype
(
input
,
'input'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'complex64'
,
'complex128'
],
'shape'
)
helper
=
LayerHelper
(
'shape'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
'shape'
,
inputs
=
{
'Input'
:
input
},
outputs
=
{
'Out'
:
out
},
stop_gradient
=
True
)
return
out
def
is_complex
(
x
):
def
is_complex
(
x
):
...
...
python/paddle/tensor/creation.py
浏览文件 @
c239f15a
...
@@ -14,27 +14,138 @@
...
@@ -14,27 +14,138 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
numpy
as
np
import
numpy
as
np
import
math
from
paddle.common_ops_import
import
fill_constant
from
paddle.common_ops_import
import
fill_constant
from
..fluid.layers
import
utils
from
..fluid.layers
import
utils
from
..fluid.layers
import
tensor
from
..static
import
Variable
,
device_guard
from
..static
import
Variable
,
device_guard
from
..framework
import
_current_expected_place
,
_get_paddle_place
from
..framework
import
_current_expected_place
,
_get_paddle_place
from
..framework
import
dygraph_only
from
..framework
import
dygraph_only
from
..framework
import
core
from
..framework
import
core
from
..fluid.layer_helper
import
LayerHelper
from
..framework
import
in_dygraph_mode
,
_non_static_mode
from
..framework
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
..framework
import
convert_np_dtype_to_dtype_
,
_varbase_creator
,
OpProtoHolder
from
..framework
import
convert_np_dtype_to_dtype_
,
_varbase_creator
,
OpProtoHolder
from
paddle.tensor.attribute
import
_complex_to_real_dtype
,
_real_to_complex_dtype
# TODO: define functions to get create a tensor
# TODO: define functions to get create a tensor
from
..fluid.layers
import
linspace
# noqa: F401
import
paddle
import
paddle
from
paddle
import
_C_ops
from
paddle
import
_C_ops
from
..fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
,
_in_eager_without_dygraph_check
from
..fluid.framework
import
_in_legacy_dygraph
,
_in_eager_without_dygraph_check
import
warnings
__all__
=
[]
__all__
=
[]
def
_complex_to_real_dtype
(
dtype
):
if
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX64
:
return
core
.
VarDesc
.
VarType
.
FP32
elif
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX128
:
return
core
.
VarDesc
.
VarType
.
FP64
else
:
return
dtype
def
_real_to_complex_dtype
(
dtype
):
if
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
return
core
.
VarDesc
.
VarType
.
COMPLEX64
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
return
core
.
VarDesc
.
VarType
.
COMPLEX128
else
:
return
dtype
def
linspace
(
start
,
stop
,
num
,
dtype
=
None
,
name
=
None
):
r
"""
This OP return fixed number of evenly spaced values within a given interval.
Args:
start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
or a Tensor of shape [1] with data type int32.
dtype(np.dtype|str, optional): The data type of output tensor, it could be
int32, int64, float32 and float64. Default: if None, the data type is float32.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.Default: None.
Returns:
Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
the value with input :attr:`start`.
Examples:
.. code-block:: python
import paddle
data = paddle.linspace(0, 10, 5, 'float32') # [0.0, 2.5, 5.0, 7.5, 10.0]
data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
"""
if
dtype
is
None
:
dtype
=
'float32'
tensor_num
=
num
tensor_start
=
start
tensor_stop
=
stop
if
not
isinstance
(
num
,
Variable
):
check_type
(
num
,
'num'
,
(
int
),
'linspace'
)
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
not
isinstance
(
start
,
Variable
):
with
device_guard
(
"cpu"
):
tensor_start
=
fill_constant
([
1
],
dtype
,
start
)
if
not
isinstance
(
stop
,
Variable
):
with
device_guard
(
"cpu"
):
tensor_stop
=
fill_constant
([
1
],
dtype
,
stop
)
if
not
isinstance
(
num
,
Variable
):
with
device_guard
(
"cpu"
):
tensor_num
=
fill_constant
([
1
],
'int32'
,
num
)
if
_non_static_mode
():
return
_C_ops
.
linspace
(
tensor_start
,
tensor_stop
,
tensor_num
,
'dtype'
,
dtype
)
helper
=
LayerHelper
(
"linspace"
,
**
locals
())
start_dtype
=
convert_dtype
(
tensor_start
.
dtype
)
stop_dtype
=
convert_dtype
(
tensor_stop
.
dtype
)
out_dtype
=
convert_dtype
(
dtype
)
if
isinstance
(
start
,
Variable
):
check_dtype
(
start
.
dtype
,
'start'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'linspace'
)
else
:
check_type
(
start
,
'start'
,
(
int
,
float
),
'linspace'
)
if
isinstance
(
stop
,
Variable
):
check_dtype
(
stop
.
dtype
,
'stop'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'linspace'
)
else
:
check_type
(
stop
,
'stop'
,
(
int
,
float
),
'linspace'
)
if
isinstance
(
num
,
Variable
):
check_dtype
(
num
.
dtype
,
'num'
,
[
'int32'
],
'linspace'
)
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
,
'float32'
,
'float64'
],
'linspace'
)
if
((
stop_dtype
==
"float64"
or
start_dtype
==
"float64"
)
and
out_dtype
in
[
"float32"
,
"int32"
])
or
((
stop_dtype
==
"int64"
or
start_dtype
==
"int64"
)
and
out_dtype
==
"int32"
):
raise
ValueError
(
"The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
"which may cause data type overflows. Please reset attr(dtype) of linspace."
.
format
(
start_dtype
,
stop_dtype
,
dtype
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'linspace'
,
inputs
=
{
'Start'
:
tensor_start
,
'Stop'
:
tensor_stop
,
'Num'
:
tensor_num
},
attrs
=
{
'dtype'
:
dtype
},
outputs
=
{
'Out'
:
[
out
]})
if
isinstance
(
num
,
int
):
out
.
desc
.
set_shape
((
num
,
))
return
out
@
dygraph_only
@
dygraph_only
def
to_tensor
(
data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
):
def
to_tensor
(
data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
):
r
"""
r
"""
...
@@ -60,7 +171,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
...
@@ -60,7 +171,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
Tensor: A Tensor constructed from ``data`` .
Tensor: A Tensor constructed from ``data`` .
Raises:
Raises:
TypeError: If the data type of ``data`` is not scalar, list, tuple, n
umpy
.ndarray, paddle.Tensor
TypeError: If the data type of ``data`` is not scalar, list, tuple, n
p
.ndarray, paddle.Tensor
ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string.
ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string.
...
@@ -152,7 +263,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
...
@@ -152,7 +263,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
return
data
return
data
else
:
else
:
raise
TypeError
(
raise
TypeError
(
"Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|n
umpy
.ndarray|paddle.Tensor"
.
"Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|n
p
.ndarray|paddle.Tensor"
.
format
(
type
(
data
)))
format
(
type
(
data
)))
if
not
dtype
:
if
not
dtype
:
if
data
.
dtype
in
[
if
data
.
dtype
in
[
...
@@ -439,11 +550,39 @@ def eye(num_rows, num_columns=None, dtype=None, name=None):
...
@@ -439,11 +550,39 @@ def eye(num_rows, num_columns=None, dtype=None, name=None):
dtype
=
'float32'
dtype
=
'float32'
if
num_columns
is
None
:
if
num_columns
is
None
:
num_columns
=
num_rows
num_columns
=
num_rows
return
paddle
.
fluid
.
layers
.
eye
(
num_rows
=
num_rows
,
num_columns
=
num_columns
,
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
batch_shape
=
None
,
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
dtype
=
dtype
,
if
num_columns
is
not
None
:
name
=
name
)
if
not
isinstance
(
num_columns
,
int
)
or
num_columns
<
0
:
raise
TypeError
(
"num_columns should be a non-negative int"
)
else
:
num_columns
=
num_rows
if
_non_static_mode
():
out
=
_C_ops
.
eye
(
'dtype'
,
dtype
,
'num_rows'
,
num_rows
,
'num_columns'
,
num_columns
)
else
:
helper
=
LayerHelper
(
"eye"
,
**
locals
())
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'eye'
)
if
not
isinstance
(
num_rows
,
int
)
or
num_rows
<
0
:
raise
TypeError
(
"num_rows should be a non-negative int"
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'eye'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'num_rows'
:
num_rows
,
'num_columns'
:
num_columns
,
'dtype'
:
dtype
},
stop_gradient
=
True
)
out
.
stop_gradient
=
True
return
out
def
full
(
shape
,
fill_value
,
dtype
=
None
,
name
=
None
):
def
full
(
shape
,
fill_value
,
dtype
=
None
,
name
=
None
):
...
@@ -564,7 +703,53 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
...
@@ -564,7 +703,53 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
end
=
start
end
=
start
start
=
0
start
=
0
return
paddle
.
fluid
.
layers
.
range
(
start
,
end
,
step
,
dtype
,
name
)
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
not
isinstance
(
start
,
Variable
):
with
device_guard
(
"cpu"
):
start
=
fill_constant
([
1
],
dtype
,
start
,
force_cpu
=
True
)
elif
start
.
dtype
!=
dtype
:
start
=
paddle
.
cast
(
start
,
dtype
)
if
not
isinstance
(
end
,
Variable
):
with
device_guard
(
"cpu"
):
end
=
fill_constant
([
1
],
dtype
,
end
,
force_cpu
=
True
)
elif
end
.
dtype
!=
dtype
:
end
=
paddle
.
cast
(
end
,
dtype
)
if
not
isinstance
(
step
,
Variable
):
with
device_guard
(
"cpu"
):
step
=
fill_constant
([
1
],
dtype
,
step
,
force_cpu
=
True
)
elif
step
.
dtype
!=
dtype
:
step
=
paddle
.
cast
(
step
,
dtype
)
if
in_dygraph_mode
():
return
_C_ops
.
final_state_arange
(
start
,
end
,
step
,
dtype
,
_current_expected_place
())
if
_in_legacy_dygraph
():
out
=
_C_ops
.
range
(
start
,
end
,
step
)
out
.
stop_gradient
=
True
return
out
out_shape
=
None
if
not
isinstance
(
start
,
Variable
)
and
not
isinstance
(
end
,
Variable
)
and
not
isinstance
(
step
,
Variable
):
out_shape
=
[
int
(
math
.
ceil
((
end
-
start
)
/
step
))]
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'range/arange'
)
helper
=
LayerHelper
(
'range'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
,
shape
=
out_shape
)
helper
.
append_op
(
type
=
'range'
,
inputs
=
{
'Start'
:
start
,
'End'
:
end
,
'Step'
:
step
},
outputs
=
{
'Out'
:
out
})
out
.
stop_gradient
=
True
return
out
def
_tril_triu_op
(
helper
):
def
_tril_triu_op
(
helper
):
...
@@ -1187,7 +1372,7 @@ def assign(x, output=None):
...
@@ -1187,7 +1372,7 @@ def assign(x, output=None):
The OP copies the :attr:`x` to the :attr:`output`.
The OP copies the :attr:`x` to the :attr:`output`.
Parameters:
Parameters:
x (Tensor|n
umpy
.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
x (Tensor|n
p
.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
Note: the float64 data will be converted to float32 because of current platform protobuf
Note: the float64 data will be converted to float32 because of current platform protobuf
data limitation.
data limitation.
...
@@ -1211,9 +1396,91 @@ def assign(x, output=None):
...
@@ -1211,9 +1396,91 @@ def assign(x, output=None):
result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
"""
"""
check_type
(
x
,
'x'
,
(
Variable
,
np
.
ndarray
,
list
,
tuple
,
float
,
int
,
bool
),
input
=
x
'assign'
)
helper
=
LayerHelper
(
'assign'
,
**
locals
())
return
tensor
.
assign
(
x
,
output
)
check_type
(
input
,
'input'
,
(
Variable
,
np
.
ndarray
,
list
,
tuple
,
float
,
int
,
bool
),
'assign'
)
is_inplace
=
True
if
output
is
not
None
else
False
if
np
.
isscalar
(
input
)
and
not
isinstance
(
input
,
str
):
input
=
np
.
array
([
input
])
elif
isinstance
(
input
,
(
list
,
tuple
)):
input
=
np
.
array
(
input
)
# NOTE(Aurelius84): Why we judge core.VarBase?
# In case of @to_static, a VarBase can be as input of `assign`,
# but _non_static_mode()==False under @to_static, which means
# isinstance(VarBase, Variable) == False. It will cause return None
# after this api.
if
isinstance
(
input
,
(
Variable
,
core
.
VarBase
)):
if
_non_static_mode
():
if
output
is
None
:
if
_in_legacy_dygraph
():
output
=
core
.
VarBase
()
else
:
output
=
core
.
eager
.
Tensor
()
_C_ops
.
assign
(
input
,
output
)
else
:
check_dtype
(
input
.
dtype
,
'input'
,
[
'float16'
,
'uint16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'uint8'
,
'bool'
],
'assign'
,
'(When the type of input in assign is Variable.)'
)
if
output
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
elif
isinstance
(
input
,
np
.
ndarray
):
# Not support [var, var, ...] currently.
if
len
(
input
.
shape
)
>
0
and
any
(
isinstance
(
x
,
Variable
)
for
x
in
input
):
raise
TypeError
(
"Required type(input) numpy.ndarray, but found `list(Variable)` in input."
)
dtype
=
convert_np_dtype_to_dtype_
(
input
.
dtype
)
if
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
# Setting FP64 numpy data is not supported in Paddle, so we
# use FP32 here
warnings
.
warn
(
"paddle.assign doesn't support float64 input now due "
"to current platform protobuf data limitation, we convert "
"it to float32"
)
dtype
=
core
.
VarDesc
.
VarType
.
FP32
if
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
value_name
=
"bool_values"
values
=
[
int
(
v
)
for
v
in
input
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
input
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
input
.
flat
]
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
value_name
=
"int64_values"
values
=
[
int
(
v
)
for
v
in
input
.
flat
]
else
:
raise
TypeError
(
"When the type of 'input' in assign is numpy.ndarray, "
"the data type of 'input' must be bool, float32, int32 or int64, but "
"received %s."
%
convert_dtype
(
dtype
))
if
input
.
size
>
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it"
)
if
output
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
{
'dtype'
:
dtype
,
'shape'
:
list
(
input
.
shape
),
value_name
:
values
})
if
is_inplace
and
_non_static_mode
():
output
.
_bump_inplace_version
()
return
output
def
clone
(
x
,
name
=
None
):
def
clone
(
x
,
name
=
None
):
...
...
python/paddle/tensor/linalg.py
浏览文件 @
c239f15a
...
@@ -13,14 +13,16 @@
...
@@ -13,14 +13,16 @@
# limitations under the License.
# limitations under the License.
import
numpy
as
np
import
numpy
as
np
from
..f
luid.layer_helper
import
LayerHelper
from
..f
ramework
import
LayerHelper
from
..framework
import
_varbase_creator
,
_dygraph_tracer
,
in_dygraph_mode
,
_non_static_mode
from
..framework
import
_varbase_creator
,
_dygraph_tracer
,
in_dygraph_mode
,
_non_static_mode
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..static
import
Variable
from
..static
import
Variable
from
..fluid.framework
import
_in_legacy_dygraph
from
..fluid.framework
import
_in_legacy_dygraph
from
.manipulation
import
cast
from
.manipulation
import
cast
from
.math
import
multiply
,
add
from
.logic
import
logical_not
from
.creation
import
full
from
..fluid
import
layers
import
paddle
import
paddle
from
paddle.common_ops_import
import
core
from
paddle.common_ops_import
import
core
from
paddle.common_ops_import
import
VarDesc
from
paddle.common_ops_import
import
VarDesc
...
@@ -2532,11 +2534,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
...
@@ -2532,11 +2534,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
y
=
paddle
.
to_tensor
(
y
,
dtype
=
x
.
dtype
)
y
=
paddle
.
to_tensor
(
y
,
dtype
=
x
.
dtype
)
condition
=
s
>
cutoff
condition
=
s
>
cutoff
cond_int
=
layers
.
cast
(
condition
,
s
.
dtype
)
cond_int
=
cast
(
condition
,
s
.
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
condition
),
s
.
dtype
)
cond_not_int
=
cast
(
logical_not
(
condition
),
s
.
dtype
)
out1
=
layers
.
elementwise_mul
(
1
/
s
,
cond_int
)
out1
=
multiply
(
1
/
s
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
1
/
y
,
cond_not_int
)
out2
=
multiply
(
1
/
y
,
cond_not_int
)
singular
=
layers
.
elementwise_
add
(
out1
,
out2
)
singular
=
add
(
out1
,
out2
)
st
,
_
=
_C_ops
.
unsqueeze2
(
singular
,
'axes'
,
[
-
2
])
st
,
_
=
_C_ops
.
unsqueeze2
(
singular
,
'axes'
,
[
-
2
])
dims
=
list
(
range
(
len
(
vt
.
shape
)))
dims
=
list
(
range
(
len
(
vt
.
shape
)))
...
@@ -2559,11 +2561,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
...
@@ -2559,11 +2561,11 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
y
=
paddle
.
to_tensor
(
y
,
dtype
=
s
.
dtype
)
y
=
paddle
.
to_tensor
(
y
,
dtype
=
s
.
dtype
)
condition
=
s_abs
>
cutoff
condition
=
s_abs
>
cutoff
cond_int
=
layers
.
cast
(
condition
,
s
.
dtype
)
cond_int
=
cast
(
condition
,
s
.
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
condition
),
s
.
dtype
)
cond_not_int
=
cast
(
logical_not
(
condition
),
s
.
dtype
)
out1
=
layers
.
elementwise_mul
(
1
/
s
,
cond_int
)
out1
=
multiply
(
1
/
s
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
1
/
y
,
cond_not_int
)
out2
=
multiply
(
1
/
y
,
cond_not_int
)
singular
=
layers
.
elementwise_
add
(
out1
,
out2
)
singular
=
add
(
out1
,
out2
)
st
,
_
=
_C_ops
.
unsqueeze2
(
singular
,
'axes'
,
[
-
2
])
st
,
_
=
_C_ops
.
unsqueeze2
(
singular
,
'axes'
,
[
-
2
])
out_1
=
u
*
st
out_1
=
u
*
st
...
@@ -2597,17 +2599,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
...
@@ -2597,17 +2599,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
'keep_dim'
:
True
,
'keep_dim'
:
True
,
'reduce_all'
:
False
})
'reduce_all'
:
False
})
rcond
=
layers
.
fill_constant
(
shape
=
[
1
],
value
=
rcond
,
dtype
=
dtype
)
rcond
=
full
(
shape
=
[
1
],
fill_
value
=
rcond
,
dtype
=
dtype
)
cutoff
=
rcond
*
max_singular_val
cutoff
=
rcond
*
max_singular_val
y
=
float
(
'inf'
)
y
=
float
(
'inf'
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
value
=
y
,
dtype
=
dtype
)
y
=
full
(
shape
=
[
1
],
fill_
value
=
y
,
dtype
=
dtype
)
condition
=
s
>
cutoff
condition
=
s
>
cutoff
cond_int
=
layers
.
cast
(
condition
,
dtype
)
cond_int
=
cast
(
condition
,
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
condition
),
dtype
)
cond_not_int
=
cast
(
logical_not
(
condition
),
dtype
)
out1
=
layers
.
elementwise_mul
(
1
/
s
,
cond_int
)
out1
=
multiply
(
1
/
s
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
1
/
y
,
cond_not_int
)
out2
=
multiply
(
1
/
y
,
cond_not_int
)
singular
=
layers
.
elementwise_
add
(
out1
,
out2
)
singular
=
add
(
out1
,
out2
)
st
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
st
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
st_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
st_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
...
@@ -2682,17 +2684,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
...
@@ -2682,17 +2684,17 @@ def pinv(x, rcond=1e-15, hermitian=False, name=None):
'keep_dim'
:
True
,
'keep_dim'
:
True
,
'reduce_all'
:
False
})
'reduce_all'
:
False
})
rcond
=
layers
.
fill_constant
(
shape
=
[
1
],
value
=
rcond
,
dtype
=
s_type
)
rcond
=
full
(
shape
=
[
1
],
fill_
value
=
rcond
,
dtype
=
s_type
)
cutoff
=
rcond
*
max_singular_val
cutoff
=
rcond
*
max_singular_val
y
=
float
(
'inf'
)
y
=
float
(
'inf'
)
y
=
layers
.
fill_constant
(
shape
=
[
1
],
value
=
y
,
dtype
=
s_type
)
y
=
full
(
shape
=
[
1
],
fill_
value
=
y
,
dtype
=
s_type
)
condition
=
s_abs
>
cutoff
condition
=
s_abs
>
cutoff
cond_int
=
layers
.
cast
(
condition
,
s_type
)
cond_int
=
cast
(
condition
,
s_type
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
condition
),
s_type
)
cond_not_int
=
cast
(
logical_not
(
condition
),
s_type
)
out1
=
layers
.
elementwise_mul
(
1
/
s
,
cond_int
)
out1
=
multiply
(
1
/
s
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
1
/
y
,
cond_not_int
)
out2
=
multiply
(
1
/
y
,
cond_not_int
)
singular
=
layers
.
elementwise_
add
(
out1
,
out2
)
singular
=
add
(
out1
,
out2
)
st
=
helper
.
create_variable_for_type_inference
(
dtype
=
s_type
)
st
=
helper
.
create_variable_for_type_inference
(
dtype
=
s_type
)
st_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
s_type
)
st_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
s_type
)
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
c239f15a
此差异已折叠。
点击以展开。
python/paddle/tensor/random.py
浏览文件 @
c239f15a
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
from
..framework
import
core
from
..framework
import
core
from
..framework
import
convert_np_dtype_to_dtype_
,
dygraph_only
from
..framework
import
convert_np_dtype_to_dtype_
,
dygraph_only
from
..f
luid.layer_helper
import
LayerHelper
from
..f
ramework
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
check_shape
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
,
check_shape
from
..fluid.layers
import
utils
from
..fluid.layers
import
utils
import
paddle
import
paddle
...
...
python/paddle/tensor/search.py
浏览文件 @
c239f15a
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
from
..f
luid.layer_helper
import
LayerHelper
from
..f
ramework
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
from
..fluid
import
layers
from
..fluid
import
layers
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
from
..framework
import
core
,
in_dygraph_mode
,
_non_static_mode
...
...
python/paddle/tensor/stat.py
浏览文件 @
c239f15a
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
import
numpy
as
np
import
numpy
as
np
from
..static
import
Variable
from
..static
import
Variable
from
..f
luid.layer_helper
import
LayerHelper
from
..f
ramework
import
LayerHelper
from
..framework
import
core
from
..framework
import
core
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
.search
import
where
from
.search
import
where
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录