未验证 提交 bae4cbec 编写于 作者: L lzydev 提交者: GitHub

support auto-gen psroi_pool,roi_pool,roi_align (#54958)

上级 e6b3e283
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/multiary.h"
namespace paddle {
namespace operators {
class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor), "
"the input of PSROIPoolOp. "
"The format of input tensor is NCHW. Where N is the batch size, "
"C is the number of input channels, "
"H is the height of the input feature map, and "
"W is the width. The data type can be float32 or float64");
AddInput("ROIs",
"(phi::DenseTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
"given as [(x1, y1, x2, y2), ...]. "
"where (x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates. "
"The roi batch index can be calculated from LoD.");
AddInput("RoisNum",
"(Tensor), "
"The number of RoIs in each image.")
.AsDispensable();
AddOutput("Out",
"(Tensor), "
"the output of PSROIPoolOp is a 4-D Tensor with shape "
"(num_rois, output_channels, pooled_h, pooled_w). "
"The data type is the same as `x` ");
AddAttr<int>(
"output_channels",
"(int), "
"the number of channels of the output feature map. "
"For a task of C classes of objects, output_channels should be "
"(C + 1) for classification only.");
AddAttr<float>("spatial_scale",
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling.")
.SetDefault(1.0);
AddAttr<int>("pooled_height",
"(int, default 1), "
"the pooled output height.")
.SetDefault(1);
AddAttr<int>("pooled_width",
"(int, default 1), "
"the pooled output width.")
.SetDefault(1);
AddComment(R"Doc(
Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as
input N position-sensitive score maps and a list of num_rois regions of interest.
PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
)Doc");
}
};
class PSROIPoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class PSROIPoolGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
template <typename T>
class PSROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("psroi_pool_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("ROIs", this->Input("ROIs"));
op->SetInput("RoisNum", this->Input("RoisNum"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(psroi_pool,
PsroiPoolInferShapeFunctor,
PD_INFER_META(phi::PsroiPoolInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(psroi_pool_grad,
PsroiPoolGradInferShapeFunctor,
PD_INFER_META(phi::PsroiPoolGradInferMeta));
REGISTER_OPERATOR(psroi_pool,
ops::PSROIPoolOp,
ops::PSROIPoolOpMaker,
ops::PSROIPoolGradMaker<paddle::framework::OpDesc>,
ops::PSROIPoolGradMaker<paddle::imperative::OpBase>,
PsroiPoolInferShapeFunctor);
REGISTER_OPERATOR(psroi_pool_grad,
ops::PSROIPoolGradOp,
PsroiPoolGradInferShapeFunctor);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/ternary.h"
namespace paddle {
namespace operators {
class ROIAlignOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class ROIAlignGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Out")),
true,
platform::errors::NotFound("The GRAD@Out of ROIAlignGradOp "
"is not found."));
PADDLE_ENFORCE_EQ(ctx->HasOutputs(framework::GradVarName("X")),
true,
platform::errors::NotFound("The GRAD@X of ROIAlignGradOp "
"is not found."));
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "ROIs"),
ctx.GetPlace());
}
};
class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor), "
"The input of ROIAlignOp. The data type is float32 or float64."
"The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, "
"H is the height of the feature, and "
"W is the width of the feature.");
AddInput("ROIs",
"(phi::DenseTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D phi::DenseTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], ...]. "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates.");
AddInput("RoisNum",
"(Tensor), "
"The number of RoIs in each image.")
.AsDispensable();
AddOutput("Out",
"(Tensor), "
"The output of ROIAlignOp is a 4-D tensor with shape "
"(num_rois, channels, pooled_h, pooled_w). The data type is "
"float32 or float64.");
AddAttr<float>("spatial_scale",
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling.")
.SetDefault(1.0);
AddAttr<int>("pooled_height",
"(int, default 1), "
"The pooled output height.")
.SetDefault(1);
AddAttr<int>("pooled_width",
"(int, default 1), "
"The pooled output width.")
.SetDefault(1);
AddAttr<int>("sampling_ratio",
"(int,default -1),"
"number of sampling points in the interpolation grid"
"If <=0, then grid points are adaptive to roi_width "
"and pooled_w, likewise for height")
.SetDefault(-1);
AddAttr<bool>("aligned",
"(bool, default False),"
"If true, pixel shift it by -0.5 for align more perfectly")
.SetDefault(false);
AddComment(R"DOC(
**RoIAlign Operator**
Region of interest align (also known as RoI align) is to perform
bilinear interpolation on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7)
Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height. Location remains the origin
result.
In each ROI bin, the value of the four regularly sampled locations
are computed directly through bilinear interpolation. The output is
the mean of four locations.
Thus avoid the misaligned problem.
)DOC");
}
};
template <typename T>
class ROIAlignGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("roi_align_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("ROIs", this->Input("ROIs"));
op->SetInput("RoisNum", this->Input("RoisNum"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(RoiAlignGradNoNeedBufVarsInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(roi_align,
RoiAlignInferShapeFunctor,
PD_INFER_META(phi::RoiAlignInferMeta));
REGISTER_OPERATOR(roi_align,
ops::ROIAlignOp,
ops::ROIAlignOpMaker,
ops::ROIAlignGradMaker<paddle::framework::OpDesc>,
ops::ROIAlignGradMaker<paddle::imperative::OpBase>,
RoiAlignInferShapeFunctor);
REGISTER_OPERATOR(roi_align_grad,
ops::ROIAlignGradOp,
ops::RoiAlignGradNoNeedBufVarsInferer);
REGISTER_OP_VERSION(roi_align)
.AddCheckpoint(
R"ROC(
Incompatible upgrade of input [RpnRoisLod])ROC",
paddle::framework::compatible::OpVersionDesc().DeleteInput(
"RpnRoisLod",
"Delete RpnRoisLod due to incorrect input name and "
"it is not used in object detection models yet."))
.AddCheckpoint(
R"ROC(
Upgrade roi_align add a new input [RoisNum])ROC",
paddle::framework::compatible::OpVersionDesc().NewInput(
"RoisNum",
"The number of RoIs in each image. RoisNum is dispensable."))
.AddCheckpoint(
R"ROC(
Upgrade roi_align add a new input [aligned])ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"aligned",
"If true, pixel shift it by -0.5 for align more perfectly.",
false));
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/ternary.h"
namespace paddle {
namespace operators {
class ROIPoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class ROIPoolGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
"Input",
framework::GradVarName("Out"),
"roi_pool");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
"Output",
framework::GradVarName("X"),
"roi_pool");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor), "
"the input of ROIPoolOp. "
"The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, "
"H is the height of the feature, and "
"W is the width of the feature.");
AddInput("ROIs",
"(phi::DenseTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D phi::DenseTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], ...]. "
"Where batch_id is the id of the data, "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates.");
AddInput("RoisNum", "(Tensor), The number of RoIs in each image.")
.AsDispensable();
AddOutput("Out",
"(Tensor), "
"The output of ROIPoolOp is a 4-D tensor with shape "
"(num_rois, channels, pooled_h, pooled_w).");
AddOutput("Argmax",
"(Tensor), "
"Argmaxes corresponding to indices in X used "
"for gradient computation. Only output "
"if arg \"is_test\" is false.")
.AsIntermediate();
AddAttr<float>("spatial_scale",
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling.")
.SetDefault(1.0);
AddAttr<int>("pooled_height",
"(int, default 1), "
"The pooled output height.")
.SetDefault(1);
AddAttr<int>("pooled_width",
"(int, default 1), "
"The pooled output width.")
.SetDefault(1);
AddComment(R"DOC(
**ROIPool Operator**
Region of interest pooling (also known as RoI pooling) is to perform
is to perform max pooling on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7).
The operator has three steps:
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height
2. Finding the largest value in each section
3. Copying these max values to the output buffer
ROI Pooling for Faster-RCNN. The link below is a further introduction:
https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
)DOC");
}
};
template <typename T>
class ROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("roi_pool_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("ROIs", this->Input("ROIs"));
op->SetInput("RoisNum", this->Input("RoisNum"));
op->SetInput("Argmax", this->Output("Argmax"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(roi_pool,
RoiPoolInferShapeFunctor,
PD_INFER_META(phi::RoiPoolInferMeta));
REGISTER_OPERATOR(roi_pool,
ops::ROIPoolOp,
ops::ROIPoolOpMaker,
ops::ROIPoolGradMaker<paddle::framework::OpDesc>,
ops::ROIPoolGradMaker<paddle::imperative::OpBase>,
RoiPoolInferShapeFunctor);
REGISTER_OPERATOR(roi_pool_grad, ops::ROIPoolGradOp);
REGISTER_OP_VERSION(roi_pool)
.AddCheckpoint(
R"ROC(
Incompatible upgrade of input [RpnRoisLod])ROC",
paddle::framework::compatible::OpVersionDesc().DeleteInput(
"RpnRoisLod",
"Delete RpnRoisLod due to incorrect input name and "
"it is not used in object detection models yet."))
.AddCheckpoint(
R"ROC(
Upgrade roi_pool add a new input [RoisNum])ROC",
paddle::framework::compatible::OpVersionDesc().NewInput(
"RoisNum",
"The number of RoIs in each image. RoisNum is dispensable."));
......@@ -1645,6 +1645,18 @@
func : prelu_grad
data_type : x
- backward_op : psroi_pool_grad
forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, int output_channels=1, float spatial_scale=1.0) -> Tensor(out)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
output : Tensor(x_grad)
infer_meta :
func : GeneralUnaryGradInferMeta
param : [x]
kernel :
func : psroi_pool_grad
data_type : x
optional : boxes_num
- backward_op : put_along_axis_grad
forward : put_along_axis (Tensor arr, Tensor indices, Tensor value, int axis, str reduce = "assign") -> Tensor(out)
args : (Tensor arr, Tensor indices, Tensor out_grad, int axis, str reduce)
......@@ -1726,6 +1738,31 @@
output : Tensor(x_grad)
invoke : reverse(out_grad, axis)
- backward_op : roi_align_grad
forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, float spatial_scale=1.0, int sampling_ratio=-1, bool aligned=false) -> Tensor(out)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : roi_align_grad
data_type : boxes
no_need_buffer : x
optional : boxes_num
- backward_op : roi_pool_grad
forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, float spatial_scale=1.0) -> Tensor(out), Tensor(arg_max)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : roi_pool_grad
data_type : x
optional : boxes_num
- backward_op : roll_grad
forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
......
......@@ -535,18 +535,6 @@
func : prod_grad
composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
- backward_op : psroi_pool_grad
forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
output : Tensor(x_grad)
infer_meta :
func : GeneralUnaryGradInferMeta
param : [x]
kernel :
func : psroi_pool_grad
data_type : x
optional : boxes_num
- backward_op : relu6_grad
forward : relu6 (Tensor x) -> Tensor(out)
args : (Tensor out, Tensor out_grad)
......@@ -619,31 +607,6 @@
data_type: out_grad
optional : sequence_length
- backward_op : roi_align_grad
forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : roi_align_grad
data_type : boxes
no_need_buffer : x
optional : boxes_num
- backward_op : roi_pool_grad
forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : roi_pool_grad
data_type : x
optional : boxes_num
- backward_op : rrelu_grad
forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise)
args : (Tensor x, Tensor noise, Tensor out_grad)
......
......@@ -717,17 +717,6 @@
func : prod
backward : prod_grad
- op : psroi_pool
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
output : Tensor
infer_meta :
func : PsroiPoolInferMeta
kernel :
func : psroi_pool
data_type : x
optional : boxes_num
backward : psroi_pool_grad
- op : randint
args : (int low, int high, IntArray shape, DataType dtype=DataType::INT64, Place place={})
output : Tensor(out)
......@@ -817,29 +806,6 @@
intermediate : reserve
view : (dropout_state_in -> dropout_state_out)
- op : roi_align
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
output : Tensor
infer_meta :
func : RoiAlignInferMeta
kernel :
func : roi_align
data_type : x
optional : boxes_num
backward : roi_align_grad
- op : roi_pool
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale)
output : Tensor(out), Tensor(arg_max)
infer_meta :
func : RoiPoolInferMeta
kernel :
func : roi_pool
data_type : x
optional : boxes_num
intermediate : arg_max
backward : roi_pool_grad
- op : rrelu
args : (Tensor x, float lower, float upper, bool is_test)
output : Tensor(out), Tensor(noise)
......
......@@ -2054,6 +2054,13 @@
prod_grad : GetReduceGradExpectedKernelType
manual_signature : [prod]
- op : psroi_pool
backward : psroi_pool_grad
inputs :
{x : X, boxes : ROIs, boxes_num : RoisNum}
outputs :
out : Out
- op : put_along_axis
backward : put_along_axis_grad
inputs :
......@@ -2178,6 +2185,20 @@
{ out : Out, dropout_state_out : DropoutState, state : State, reserve : Reserve}
drop_empty_grad : [pre_state_grad, weight_list_grad]
- op : roi_align
backward : roi_align_grad
inputs :
{x : X, boxes : ROIs, boxes_num : RoisNum}
outputs :
out : Out
- op : roi_pool
backward : roi_pool_grad
inputs :
{x : X, boxes : ROIs, boxes_num : RoisNum}
outputs :
{out : Out, arg_max : Argmax}
- op : roll
backward : roll_grad
inputs :
......
......@@ -360,6 +360,33 @@
comment : Specify the data format of the input data
default : "true"
- op : roi_align
version :
- checkpoint : Incompatible upgrade of input [RpnRoisLod])
action :
- delete_input : RpnRoisLod
comment : Delete RpnRoisLod due to incorrect input name and it is not used in object detection models yet
- checkpoint : Upgrade roi_pool add a new input [RoisNum]
action :
- add_input : RoisNum
comment : The number of RoIs in each image. RoisNum is dispensable
- checkpoint : Upgrade roi_align add a new input [aligned]
action :
- add_attr : aligned
comment : If true, pixel shift it by -0.5 for align more perfectly.
default : "false"
- op : roi_pool
version :
- checkpoint : Incompatible upgrade of input [RpnRoisLod]
action :
- delete_input : RpnRoisLod
comment : Delete RpnRoisLod due to incorrect input name and it is not used in object detection models yet.
- checkpoint : Upgrade roi_pool add a new input [RoisNum]
action :
- add_input : RoisNum
comment : The number of RoIs in each image. RoisNum is dispensable
- op : roll
version :
- checkpoint : Upgrade roll add 1 attribute [axis], delete 1 attribute[dims].
......
......@@ -1864,6 +1864,17 @@
func : prior_box
data_type : input
- op : psroi_pool
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, int output_channels=1, float spatial_scale=1.0)
output : Tensor
infer_meta :
func : PsroiPoolInferMeta
kernel :
func : psroi_pool
data_type : x
optional : boxes_num
backward : psroi_pool_grad
- op : put_along_axis
args : (Tensor arr, Tensor indices, Tensor values, int axis, str reduce = "assign")
output : Tensor(out)
......@@ -1956,6 +1967,29 @@
optional : mean_grad, master_param, master_param_outs
inplace : (param -> param_out), (moment -> moment_out), (mean_square -> mean_square_out), (mean_grad -> mean_grad_out), (master_param->master_param_outs)
- op : roi_align
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, float spatial_scale=1.0, int sampling_ratio=-1, bool aligned=false)
output : Tensor
infer_meta :
func : RoiAlignInferMeta
kernel :
func : roi_align
data_type : x
optional : boxes_num
backward : roi_align_grad
- op : roi_pool
args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height=1, int pooled_width=1, float spatial_scale=1.0)
output : Tensor(out), Tensor(arg_max)
infer_meta :
func : RoiPoolInferMeta
kernel :
func : roi_pool
data_type : x
optional : boxes_num
intermediate : arg_max
backward : roi_pool_grad
- op : roll
args : (Tensor x, IntArray shifts={}, int64_t[] axis={})
output : Tensor(out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature PsroiPoolOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature(
"psroi_pool",
{"X", "ROIs", "RoisNum"},
{"pooled_height", "pooled_width", "output_channels", "spatial_scale"},
{"Out"});
}
KernelSignature PsroiPoolGradOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature(
"psroi_pool_grad",
{"X", "ROIs", "RoisNum", "Out@GRAD"},
{"pooled_height", "pooled_width", "output_channels", "spatial_scale"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(psroi_pool, phi::PsroiPoolOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(psroi_pool_grad,
phi::PsroiPoolGradOpArgumentMapping);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature RoiAlignOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("roi_align",
{"X", "ROIs", "RoisNum"},
{"pooled_height",
"pooled_width",
"spatial_scale",
"sampling_ratio",
"aligned"},
{"Out"});
}
KernelSignature RoiAlignGradOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("roi_align_grad",
{"X", "ROIs", "RoisNum", "Out@GRAD"},
{"pooled_height",
"pooled_width",
"spatial_scale",
"sampling_ratio",
"aligned"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(roi_align, phi::RoiAlignOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(roi_align_grad, phi::RoiAlignGradOpArgumentMapping);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature RoiPoolOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("roi_pool",
{"X", "ROIs", "RoisNum"},
{"pooled_height", "pooled_width", "spatial_scale"},
{"Out", "Argmax"});
}
KernelSignature RoiPoolOpGradArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("roi_pool_grad",
{"X", "ROIs", "RoisNum", "Argmax", "Out@GRAD"},
{"pooled_height", "pooled_width", "spatial_scale"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(roi_pool, phi::RoiPoolOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(roi_pool_grad, phi::RoiPoolOpGradArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册