未验证 提交 e6b3e283 编写于 作者: L lzydev 提交者: GitHub

support auto-gen cumsum (#54948)

上级 48ef3d78
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
#include "paddle/fluid/prim/utils/static/composite_grad_desc_maker.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace operators {
class CumOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
return phi::KernelKey(input_data_type, ctx.GetPlace());
}
};
class CumGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "cumsum");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
"Input",
"Out@GRAD",
"cumsum");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
return phi::KernelKey(input_data_type, ctx.GetPlace());
}
};
class CumsumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input of cumsum operator");
AddOutput("Out", "Output of cumsum operator");
AddAttr<int>("axis",
"The dimension to accumulate along. -1 means the last "
"dimension [default -1].")
.SetDefault(-1)
.SupportTensor();
AddAttr<bool>("flatten",
"Whether to compute the cumsum over the flattened array. "
"[default false].")
.SetDefault(false);
AddAttr<bool>("exclusive",
"Whether to perform exclusive cumsum. [default false].")
.SetDefault(false);
AddAttr<bool>("reverse",
"If true, the cumsum is performed in the reversed direction. "
"[default false].")
.SetDefault(false);
AddComment(R"DOC(
The cumulative sum of the elements along a given axis.
By default, the first element of the result is the same of the first element of
the input. If exclusive is true, the first element of the result is 0.
)DOC");
}
};
template <typename T>
class CumsumGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("cumsum_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
grad_op->SetAttr("reverse",
PADDLE_GET_CONST(bool, this->GetAttr("reverse")));
}
};
class CumsumCompositeGradOpMaker : public prim::CompositeGradOpMakerBase {
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
public:
void Apply() override {
paddle::Tensor x = this->GetSingleForwardInput("X");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
paddle::Tensor dx = this->GetSingleInputGrad("X");
auto* dx_ptr = this->GetOutputPtr(&dx);
std::string dx_name = this->GetOutputName(dx);
int axis = static_cast<int>(this->Attr<int>("axis"));
bool flatten = static_cast<bool>(this->Attr<bool>("flatten"));
bool exclusive = static_cast<bool>(this->Attr<bool>("exclusive"));
bool reverse = static_cast<bool>(this->Attr<bool>("reverse"));
VLOG(6) << "Runing cumsum composite func";
prim::cumsum_grad<prim::DescTensor>(
x, out_grad, axis, flatten, exclusive, reverse, dx_ptr);
this->RecoverOutputName(dx, dx_name);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPU = phi::CPUContext;
DECLARE_INFER_SHAPE_FUNCTOR(cumsum,
CumsumInferShapeFunctor,
PD_INFER_META(phi::CumScalarAxisInferMeta));
REGISTER_OPERATOR(cumsum,
ops::CumOp,
ops::CumsumOpMaker,
ops::CumsumCompositeGradOpMaker,
ops::CumsumGradMaker<paddle::framework::OpDesc>,
ops::CumsumGradMaker<paddle::imperative::OpBase>,
CumsumInferShapeFunctor);
REGISTER_OPERATOR(cumsum_grad, ops::CumGradOp);
REGISTER_OP_VERSION(cumsum).AddCheckpoint(
R"ROC(
Upgrade cumsum add a new attribute [flatten].
)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"flatten",
"In order to compute the cumsum over the flattened array when the "
"argument `axis` in python API is None.",
false));
......@@ -493,6 +493,18 @@
kernel :
func : cumprod_grad
- backward_op : cumsum_grad
forward : cumsum(Tensor x, Scalar axis=-1, bool flatten=false, bool exclusive=false, bool reverse=false) -> Tensor(out)
args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : cumsum_grad
data_type: x
composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
- backward_op : depthwise_conv2d_double_grad
forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_input), Tensor(grad_filter)
args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format)
......
......@@ -159,18 +159,6 @@
data_type : x
backward : conv2d_transpose_double_grad
- backward_op : cumsum_grad
forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : cumsum_grad
data_type: x
composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
- backward_op : deformable_conv_grad
forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
......
......@@ -166,15 +166,6 @@
output : Tensor(out)
invoke : copy_to_impl(x, place, blocking)
- op : cumsum
args : (Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse)
output : Tensor(out)
infer_meta :
func : CumScalarAxisInferMeta
kernel :
func : cumsum
backward : cumsum_grad
- op : decode_jpeg
args : (Tensor x, str mode, Place place)
output : Tensor(out)
......
......@@ -663,7 +663,7 @@
scalar:
axis:
data_type : int
tensor_name: AxisTensor
support_tensor : true
- op : data_norm
backward : data_norm_grad
......
......@@ -140,6 +140,14 @@
comment : In order to add additional size to one side of each dimension in the output.
default : "std::vector<int>{}"
- op : cumsum
version :
- checkpoint : Upgrade cumsum add a new attribute [flatten].
action :
- add_attr : flatten
comment : In order to compute the cumsum over the flattened array when the argument `axis` in python API is None.
default : "false"
- op : depthwise_conv2d
version :
- checkpoint : Upgrade depthwise_conv2d, add a new attribute [use_addto].
......
......@@ -588,6 +588,16 @@
func : cumprod
backward : cumprod_grad
- op : cumsum
args : (Tensor x, Scalar axis=-1, bool flatten=false, bool exclusive=false, bool reverse=false)
output : Tensor(out)
infer_meta :
func : CumScalarAxisInferMeta
kernel :
func : cumsum
data_type : x
backward : cumsum_grad
- op : depthwise_conv2d
args : (Tensor input, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW")
output : Tensor(out)
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature CumsumOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("cumsum_grad",
{"X", "Out@GRAD"},
{"axis", "flatten", "exclusive", "reverse"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(cumsum_grad, phi::CumsumOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册