Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
af124dcd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af124dcd
编写于
1月 14, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix API error
上级
c945ffa7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
43 addition
and
27 deletion
+43
-27
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+34
-21
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+1
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+7
-4
未找到文件。
paddle/fluid/API.spec
浏览文件 @
af124dcd
...
@@ -324,7 +324,7 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
...
@@ -324,7 +324,7 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'gtscore', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample', '
label_smooth', 'name'], varargs=None, keywords=None, defaults=(
None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'gtscore', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample', '
use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(True,
None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
af124dcd
...
@@ -121,13 +121,13 @@ template <typename T>
...
@@ -121,13 +121,13 @@ template <typename T>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
2.0
-
gt
.
w
*
gt
.
h
;
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
loss
[
0
]
+=
L1Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
...
@@ -138,13 +138,14 @@ template <typename T>
...
@@ -138,13 +138,14 @@ template <typename T>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
)
{
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
2.0
-
gt
.
w
*
gt
.
h
;
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
input_grad
[
box_idx
]
=
SCEGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
]
=
SCEGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
input_grad
[
box_idx
+
stride
]
=
SCEGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
SCEGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
...
@@ -157,10 +158,11 @@ static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
...
@@ -157,10 +158,11 @@ static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
template
<
typename
T
>
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
)
{
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
);
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
}
}
}
}
...
@@ -168,12 +170,12 @@ template <typename T>
...
@@ -168,12 +170,12 @@ template <typename T>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
const
T
neg
)
{
T
score
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
loss
;
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
}
}
}
}
...
@@ -187,8 +189,12 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
...
@@ -187,8 +189,12 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
-
0.5
)
{
if
(
obj
>
1e-5
)
{
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
obj
);
// positive sample: obj = mixup score
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
}
}
}
}
}
}
...
@@ -209,8 +215,11 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
...
@@ -209,8 +215,11 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
-
0.5
)
{
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
obj
)
*
loss
[
i
];
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
}
}
}
}
}
}
...
@@ -315,7 +324,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -315,7 +324,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
if
(
best_iou
>
ignore_thresh
)
{
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
.0
);
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
);
}
}
// TODO(dengkaipeng): all losses should be calculated if best IoU
// TODO(dengkaipeng): all losses should be calculated if best IoU
// is bigger then truth thresh should be calculated here, but
// is bigger then truth thresh should be calculated here, but
...
@@ -357,12 +366,12 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -357,12 +366,12 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
score
;
obj_mask_data
[
obj_idx
]
=
score
;
...
@@ -370,7 +379,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -370,7 +379,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
);
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
}
}
}
}
}
}
...
@@ -387,6 +396,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -387,6 +396,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
...
@@ -418,6 +428,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -418,6 +428,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
gt_score_data
=
gt_score
->
data
<
T
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
...
@@ -429,22 +440,24 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
...
@@ -429,22 +440,24 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
);
label_neg
,
score
);
}
}
}
}
}
}
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
af124dcd
...
@@ -482,7 +482,7 @@ def yolov3_loss(x,
...
@@ -482,7 +482,7 @@ def yolov3_loss(x,
raise
TypeError
(
"Attr anchor_mask of yolov3_loss must be list or tuple"
)
raise
TypeError
(
"Attr anchor_mask of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
if
not
isinstance
(
use_label_smooth
,
int
):
if
not
isinstance
(
use_label_smooth
,
bool
):
raise
TypeError
(
"Attr ues_label_smooth of yolov3 must be a bool value"
)
raise
TypeError
(
"Attr ues_label_smooth of yolov3 must be a bool value"
)
if
not
isinstance
(
ignore_thresh
,
float
):
if
not
isinstance
(
ignore_thresh
,
float
):
raise
TypeError
(
raise
TypeError
(
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
af124dcd
...
@@ -142,7 +142,7 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
...
@@ -142,7 +142,7 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
]
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
*
gtscore
[
i
,
j
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
...
@@ -152,11 +152,14 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
...
@@ -152,11 +152,14 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
for
label_idx
in
range
(
class_num
):
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
if
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
if
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
*
gtscore
[
i
,
j
]
for
j
in
range
(
mask_num
*
h
*
w
):
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>=
0
:
if
objness
[
i
,
j
]
>
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
*
objness
[
i
,
j
]
elif
objness
[
i
,
j
]
==
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
0.0
)
return
(
loss
,
objness
.
reshape
((
n
,
mask_num
,
h
,
w
)).
astype
(
'float32'
),
\
return
(
loss
,
objness
.
reshape
((
n
,
mask_num
,
h
,
w
)).
astype
(
'float32'
),
\
gt_matches
.
astype
(
'int32'
))
gt_matches
.
astype
(
'int32'
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录