未验证 提交 acefdeb7 编写于 作者: C co63oc 提交者: GitHub

Fix typos, test=document_fix (#53540)

上级 a2991538
...@@ -124,7 +124,7 @@ bool DeviceInterface::QueryEvent(size_t dev_id, const event::Event* event) { ...@@ -124,7 +124,7 @@ bool DeviceInterface::QueryEvent(size_t dev_id, const event::Event* event) {
return true; return true;
} }
// memery manage // memory manage
void DeviceInterface::MemoryCopyH2D(size_t dev_id, void DeviceInterface::MemoryCopyH2D(size_t dev_id,
void* dst, void* dst,
const void* src, const void* src,
......
...@@ -22,7 +22,7 @@ class KernelKey; ...@@ -22,7 +22,7 @@ class KernelKey;
class DenseTensor; class DenseTensor;
/** /**
* Note: GetKernelTypeForVarContext is currently designed for oneDNN kernel when * Note: GetKernelTypeForVarContext is currently designed for oneDNN kernel when
* the related memeber function 'GetKernelTypeForVar' is special. It is * the related member function 'GetKernelTypeForVar' is special. It is
* possible to leverage to other vendor libraries in the future. * possible to leverage to other vendor libraries in the future.
*/ */
class GetKernelTypeForVarContext { class GetKernelTypeForVarContext {
...@@ -47,7 +47,7 @@ class GetKernelTypeForVarContext { ...@@ -47,7 +47,7 @@ class GetKernelTypeForVarContext {
private: private:
const KernelKey* kernel_key_; // not owned const KernelKey* kernel_key_; // not owned
// Use AttributeMap in namespace 'phi' to avoid depending 'fuild' // Use AttributeMap in namespace 'phi' to avoid depending 'fluid'
const AttributeMap* attrs_; // not owned const AttributeMap* attrs_; // not owned
std::string* var_name_; // not owned std::string* var_name_; // not owned
DenseTensor* tensor_; // not owned DenseTensor* tensor_; // not owned
......
...@@ -31,7 +31,7 @@ const static std::string deprecated_kernel_name = "deprecated"; // NOLINT ...@@ -31,7 +31,7 @@ const static std::string deprecated_kernel_name = "deprecated"; // NOLINT
const std::unordered_set<std::string> standard_kernel_suffixs({ const std::unordered_set<std::string> standard_kernel_suffixs({
"sr", // SelectedRows kernel "sr", // SelectedRows kernel
"raw" // fallback kernel of origfinal fluid op "raw" // fallback kernel of original fluid op
}); });
/** /**
......
...@@ -38,7 +38,7 @@ namespace funcs { ...@@ -38,7 +38,7 @@ namespace funcs {
* if Mat A is [BatchSize, H, W], Mat B is [BatchSize, H, W]. It will be a * if Mat A is [BatchSize, H, W], Mat B is [BatchSize, H, W]. It will be a
* `batch_size` times of GEMM. The batched GEMM could be faster base on the * `batch_size` times of GEMM. The batched GEMM could be faster base on the
* implementation of the blas library. The batch size could be zero. If any * implementation of the blas library. The batch size could be zero. If any
* matrix of `matmul` has a batch size, the will be a batched GEMM, too. e.g., * matrix of `matmul` has a batch size, there will be a batched GEMM, too. e.g.,
* Mat A is [BatchSize, H1, W2], and Mat B [H2, W2], The result matrix wil be * Mat A is [BatchSize, H1, W2], and Mat B [H2, W2], The result matrix wil be
* [BatchSize, H1, W2] * [BatchSize, H1, W2]
* *
......
...@@ -39,7 +39,7 @@ namespace funcs { ...@@ -39,7 +39,7 @@ namespace funcs {
// While kMatmul, kMatmulGrad, kMatmulGradWithoutBias share the same // While kMatmul, kMatmulGrad, kMatmulGradWithoutBias share the same
// enum value, but if all elements for MatmulPlanner->GetKey() is same, // enum value, but if all elements for MatmulPlanner->GetKey() is same,
// no matter forward or backward, they could share the same descriptor // no matter forward or backward, they could share the same descriptor
// cache, in that the descritpor is for decription of matmul operation. // cache, in that the descriptor is for description of matmul operation.
enum MatmulFusedType { enum MatmulFusedType {
kMatmul = CUBLASLT_EPILOGUE_DEFAULT, kMatmul = CUBLASLT_EPILOGUE_DEFAULT,
kMatmulGrad = CUBLASLT_EPILOGUE_DEFAULT, kMatmulGrad = CUBLASLT_EPILOGUE_DEFAULT,
...@@ -216,7 +216,7 @@ struct MatmulDescriptor { ...@@ -216,7 +216,7 @@ struct MatmulDescriptor {
cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>(); cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
cublasComputeType_t compute_type = GetCudaComputeType<T>(); cublasComputeType_t compute_type = GetCudaComputeType<T>();
// Create operation desciriptor; see cublasLtMatmulDescAttributes_t for // Create operation descriptor; see cublasLtMatmulDescAttributes_t for
// details about defaults; just need to set the transforms for A and B // details about defaults; just need to set the transforms for A and B
PADDLE_ENFORCE_GPU_SUCCESS( PADDLE_ENFORCE_GPU_SUCCESS(
dynload::cublasLtMatmulDescCreate(&op_desc, compute_type, scale_type)); dynload::cublasLtMatmulDescCreate(&op_desc, compute_type, scale_type));
...@@ -787,7 +787,7 @@ struct LinearGradWithCublasLt : public CublasLtBase<T> { ...@@ -787,7 +787,7 @@ struct LinearGradWithCublasLt : public CublasLtBase<T> {
} }
}; };
#else #else
// A void structure just for successfully complile. // A void structure just for successfully compile.
struct MatmulPlanner {}; struct MatmulPlanner {};
#endif // (PADDLE_WITH_CUDA) && CUDA_VERSION >= 11060 #endif // (PADDLE_WITH_CUDA) && CUDA_VERSION >= 11060
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册