未验证 提交 acefdeb7 编写于 作者: C co63oc 提交者: GitHub

Fix typos, test=document_fix (#53540)

上级 a2991538
......@@ -124,7 +124,7 @@ bool DeviceInterface::QueryEvent(size_t dev_id, const event::Event* event) {
return true;
}
// memery manage
// memory manage
void DeviceInterface::MemoryCopyH2D(size_t dev_id,
void* dst,
const void* src,
......
......@@ -22,7 +22,7 @@ class KernelKey;
class DenseTensor;
/**
* Note: GetKernelTypeForVarContext is currently designed for oneDNN kernel when
* the related memeber function 'GetKernelTypeForVar' is special. It is
* the related member function 'GetKernelTypeForVar' is special. It is
* possible to leverage to other vendor libraries in the future.
*/
class GetKernelTypeForVarContext {
......@@ -47,7 +47,7 @@ class GetKernelTypeForVarContext {
private:
const KernelKey* kernel_key_; // not owned
// Use AttributeMap in namespace 'phi' to avoid depending 'fuild'
// Use AttributeMap in namespace 'phi' to avoid depending 'fluid'
const AttributeMap* attrs_; // not owned
std::string* var_name_; // not owned
DenseTensor* tensor_; // not owned
......
......@@ -31,7 +31,7 @@ const static std::string deprecated_kernel_name = "deprecated"; // NOLINT
const std::unordered_set<std::string> standard_kernel_suffixs({
"sr", // SelectedRows kernel
"raw" // fallback kernel of origfinal fluid op
"raw" // fallback kernel of original fluid op
});
/**
......
......@@ -38,7 +38,7 @@ namespace funcs {
* if Mat A is [BatchSize, H, W], Mat B is [BatchSize, H, W]. It will be a
* `batch_size` times of GEMM. The batched GEMM could be faster base on the
* implementation of the blas library. The batch size could be zero. If any
* matrix of `matmul` has a batch size, the will be a batched GEMM, too. e.g.,
* matrix of `matmul` has a batch size, there will be a batched GEMM, too. e.g.,
* Mat A is [BatchSize, H1, W2], and Mat B [H2, W2], The result matrix wil be
* [BatchSize, H1, W2]
*
......
......@@ -39,7 +39,7 @@ namespace funcs {
// While kMatmul, kMatmulGrad, kMatmulGradWithoutBias share the same
// enum value, but if all elements for MatmulPlanner->GetKey() is same,
// no matter forward or backward, they could share the same descriptor
// cache, in that the descritpor is for decription of matmul operation.
// cache, in that the descriptor is for description of matmul operation.
enum MatmulFusedType {
kMatmul = CUBLASLT_EPILOGUE_DEFAULT,
kMatmulGrad = CUBLASLT_EPILOGUE_DEFAULT,
......@@ -216,7 +216,7 @@ struct MatmulDescriptor {
cudaDataType_t scale_type = phi::backends::gpu::ToCudaDataType<MT>();
cublasComputeType_t compute_type = GetCudaComputeType<T>();
// Create operation desciriptor; see cublasLtMatmulDescAttributes_t for
// Create operation descriptor; see cublasLtMatmulDescAttributes_t for
// details about defaults; just need to set the transforms for A and B
PADDLE_ENFORCE_GPU_SUCCESS(
dynload::cublasLtMatmulDescCreate(&op_desc, compute_type, scale_type));
......@@ -787,7 +787,7 @@ struct LinearGradWithCublasLt : public CublasLtBase<T> {
}
};
#else
// A void structure just for successfully complile.
// A void structure just for successfully compile.
struct MatmulPlanner {};
#endif // (PADDLE_WITH_CUDA) && CUDA_VERSION >= 11060
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册