提交 9ccc94f4 编写于 作者: D dangqingqing

srl api training

上级 d425a5ca
import numpy
import paddle.v2 as paddle
from paddle.trainer_config_helpers.atts import ParamAttr
from mode_v2 import db_lstm
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
predicate_file = './data/verbDict.txt'
word_dict = dict()
label_dict = dict()
predicate_dict = dict()
with open(word_dict_file, 'r') as f_word, \
open(label_dict_file, 'r') as f_label, \
open(predicate_file, 'r') as f_pre:
for i, line in enumerate(f_word):
w = line.strip()
word_dict[w] = i
for i, line in enumerate(f_label):
w = line.strip()
label_dict[w] = i
for i, line in enumerate(f_pre):
w = line.strip()
predicate_dict[w] = i
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(predicate_dict)
def train_reader(file_name="data/feature"):
def reader():
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [label_dict.get(w) for w in label_list]
yield word_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot, label_slot
return reader
def main():
paddle.init(use_gpu=False, trainer_count=1)
label_dict_len = 500
# define network topology
output = db_lstm()
target = paddle.layer.data(name='target', size=label_dict_len)
crf_cost = paddle.layer.crf_layer(
size=500,
input=output,
label=target,
param_attr=paddle.attr.Param(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))
crf_dec = paddle.layer.crf_decoding_layer(
name='crf_dec_l',
size=label_dict_len,
input=output,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
topo = [crf_cost, crf_dec]
parameters = paddle.parameters.create(topo)
optimizer = paddle.optimizer.Momentum(momentum=0.01, learning_rate=2e-2)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
para = parameters.get('___fc_2__.w0')
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
event.cost, para.mean())
else:
pass
trainer = paddle.trainer.SGD(update_equation=optimizer)
trainer.train(
train_data_reader=train_reader,
batch_size=32,
topology=topo,
parameters=parameters,
event_handler=event_handler,
num_passes=10000,
data_types=[],
reader_dict={})
if __name__ == '__main__':
main()
import paddle.v2 as paddle
def db_lstm(word_dict_len, label_dict_len, pred_len):
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
#8 features
word = paddle.layer.data(name='word_data', size=word_dict_len)
predicate = paddle.layer.data(name='verb_data', size=pred_len)
ctx_n2 = paddle.layer.data(name='ctx_n2_data', size=word_dict_len)
ctx_n1 = paddle.layer.data(name='ctx_n1_data', size=word_dict_len)
ctx_0 = paddle.layer.data(name='ctx_0_data', size=word_dict_len)
ctx_p1 = paddle.layer.data(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = paddle.layer.data(name='ctx_p2_data', size=word_dict_len)
mark = paddle.layer.data(name='mark_data', size=mark_dict_len)
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
predicate_embedding = paddle.layer.embeding(
size=word_dim,
input=predicate,
param_attr=paddle.attr.Param(
name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embeding(
name='word_ctx-in_embedding',
size=mark_dim,
input=mark,
param_attr=std_0)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
paddle.layer.embeding(
size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = paddle.layer.lstmemory(
input=hidden_0,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = paddle.layer.lstmemory(
input=mix_hidden,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = paddle.layer.mixed(
size=label_dict_len,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
return feature_out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册