Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9ccc94f4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
9ccc94f4
编写于
2月 27, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
srl api training
上级
d425a5ca
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
215 addition
and
0 deletion
+215
-0
demo/semantic_role_labeling/api_train_v2.py
demo/semantic_role_labeling/api_train_v2.py
+112
-0
demo/semantic_role_labeling/model_v2.py
demo/semantic_role_labeling/model_v2.py
+103
-0
未找到文件。
demo/semantic_role_labeling/api_train_v2.py
0 → 100644
浏览文件 @
9ccc94f4
import
numpy
import
paddle.v2
as
paddle
from
paddle.trainer_config_helpers.atts
import
ParamAttr
from
mode_v2
import
db_lstm
word_dict_file
=
'./data/wordDict.txt'
label_dict_file
=
'./data/targetDict.txt'
predicate_file
=
'./data/verbDict.txt'
word_dict
=
dict
()
label_dict
=
dict
()
predicate_dict
=
dict
()
with
open
(
word_dict_file
,
'r'
)
as
f_word
,
\
open
(
label_dict_file
,
'r'
)
as
f_label
,
\
open
(
predicate_file
,
'r'
)
as
f_pre
:
for
i
,
line
in
enumerate
(
f_word
):
w
=
line
.
strip
()
word_dict
[
w
]
=
i
for
i
,
line
in
enumerate
(
f_label
):
w
=
line
.
strip
()
label_dict
[
w
]
=
i
for
i
,
line
in
enumerate
(
f_pre
):
w
=
line
.
strip
()
predicate_dict
[
w
]
=
i
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
pred_len
=
len
(
predicate_dict
)
def
train_reader
(
file_name
=
"data/feature"
):
def
reader
():
with
open
(
file_name
,
'r'
)
as
fdata
:
for
line
in
fdata
:
sentence
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
label
=
\
line
.
strip
().
split
(
'
\t
'
)
words
=
sentence
.
split
()
sen_len
=
len
(
words
)
word_slot
=
[
word_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
words
]
predicate_slot
=
[
predicate_dict
.
get
(
predicate
)]
*
sen_len
ctx_n2_slot
=
[
word_dict
.
get
(
ctx_n2
,
UNK_IDX
)]
*
sen_len
ctx_n1_slot
=
[
word_dict
.
get
(
ctx_n1
,
UNK_IDX
)]
*
sen_len
ctx_0_slot
=
[
word_dict
.
get
(
ctx_0
,
UNK_IDX
)]
*
sen_len
ctx_p1_slot
=
[
word_dict
.
get
(
ctx_p1
,
UNK_IDX
)]
*
sen_len
ctx_p2_slot
=
[
word_dict
.
get
(
ctx_p2
,
UNK_IDX
)]
*
sen_len
marks
=
mark
.
split
()
mark_slot
=
[
int
(
w
)
for
w
in
marks
]
label_list
=
label
.
split
()
label_slot
=
[
label_dict
.
get
(
w
)
for
w
in
label_list
]
yield
word_slot
,
ctx_n2_slot
,
ctx_n1_slot
,
\
ctx_0_slot
,
ctx_p1_slot
,
ctx_p2_slot
,
predicate_slot
,
mark_slot
,
label_slot
return
reader
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
label_dict_len
=
500
# define network topology
output
=
db_lstm
()
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
size
=
label_dict_len
)
crf_cost
=
paddle
.
layer
.
crf_layer
(
size
=
500
,
input
=
output
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
,
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
))
crf_dec
=
paddle
.
layer
.
crf_decoding_layer
(
name
=
'crf_dec_l'
,
size
=
label_dict_len
,
input
=
output
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
topo
=
[
crf_cost
,
crf_dec
]
parameters
=
paddle
.
parameters
.
create
(
topo
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.01
,
learning_rate
=
2e-2
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
para
=
parameters
.
get
(
'___fc_2__.w0'
)
print
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
para
.
mean
())
else
:
pass
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
optimizer
)
trainer
.
train
(
train_data_reader
=
train_reader
,
batch_size
=
32
,
topology
=
topo
,
parameters
=
parameters
,
event_handler
=
event_handler
,
num_passes
=
10000
,
data_types
=
[],
reader_dict
=
{})
if
__name__
==
'__main__'
:
main
()
demo/semantic_role_labeling/model_v2.py
0 → 100644
浏览文件 @
9ccc94f4
import
paddle.v2
as
paddle
def
db_lstm
(
word_dict_len
,
label_dict_len
,
pred_len
):
mark_dict_len
=
2
word_dim
=
32
mark_dim
=
5
hidden_dim
=
512
depth
=
8
#8 features
word
=
paddle
.
layer
.
data
(
name
=
'word_data'
,
size
=
word_dict_len
)
predicate
=
paddle
.
layer
.
data
(
name
=
'verb_data'
,
size
=
pred_len
)
ctx_n2
=
paddle
.
layer
.
data
(
name
=
'ctx_n2_data'
,
size
=
word_dict_len
)
ctx_n1
=
paddle
.
layer
.
data
(
name
=
'ctx_n1_data'
,
size
=
word_dict_len
)
ctx_0
=
paddle
.
layer
.
data
(
name
=
'ctx_0_data'
,
size
=
word_dict_len
)
ctx_p1
=
paddle
.
layer
.
data
(
name
=
'ctx_p1_data'
,
size
=
word_dict_len
)
ctx_p2
=
paddle
.
layer
.
data
(
name
=
'ctx_p2_data'
,
size
=
word_dict_len
)
mark
=
paddle
.
layer
.
data
(
name
=
'mark_data'
,
size
=
mark_dict_len
)
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
0.
,
learning_rate
=
0.
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
predicate_embedding
=
paddle
.
layer
.
embeding
(
size
=
word_dim
,
input
=
predicate
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'vemb'
,
initial_std
=
default_std
))
mark_embedding
=
paddle
.
layer
.
embeding
(
name
=
'word_ctx-in_embedding'
,
size
=
mark_dim
,
input
=
mark
,
param_attr
=
std_0
)
word_input
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
]
emb_layers
=
[
paddle
.
layer
.
embeding
(
size
=
word_dim
,
input
=
x
,
param_attr
=
emb_para
)
for
x
in
word_input
]
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
hidden_0
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
emb
,
param_attr
=
std_default
)
for
emb
in
emb_layers
])
mix_hidden_lr
=
1e-3
lstm_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
1.0
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
lstm_0
=
paddle
.
layer
.
lstmemory
(
input
=
hidden_0
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
#stack L-LSTM and R-LSTM with direct edges
input_tmp
=
[
hidden_0
,
lstm_0
]
for
i
in
range
(
1
,
depth
):
mix_hidden
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
0
],
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
])
lstm
=
paddle
.
layer
.
lstmemory
(
input
=
mix_hidden
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
reverse
=
((
i
%
2
)
==
1
),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
input_tmp
=
[
mix_hidden
,
lstm
]
feature_out
=
paddle
.
layer
.
mixed
(
size
=
label_dict_len
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
0
],
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
],
)
return
feature_out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录