Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d425a5ca
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d425a5ca
编写于
2月 27, 2017
作者:
T
Tao Luo
提交者:
GitHub
2月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1453 from qingqing01/mixed_layer
convert mixed layer, projection and operator
上级
3c78b03b
d25173c0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
192 addition
and
37 deletion
+192
-37
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+2
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+104
-35
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+86
-2
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d425a5ca
...
...
@@ -112,6 +112,7 @@ __all__ = [
'priorbox_layer'
,
'spp_layer'
,
'pad_layer'
,
'layer_support'
,
]
...
...
@@ -708,6 +709,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self
.
size
=
ml
.
config
.
size
self
.
finalized
=
True
@
wrap_name_default
(
"mixed"
)
...
...
python/paddle/v2/layer.py
浏览文件 @
d425a5ca
...
...
@@ -71,7 +71,11 @@ import collections
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
...
...
@@ -84,6 +88,13 @@ __all__ = [
'sum_cost'
,
'huber_cost'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
__all__
+=
__projection_names__
__operator_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_operator'
),
dir
(
conf_helps
))
__all__
+=
__operator_names__
def
parse_network
(
*
outputs
):
"""
...
...
@@ -101,9 +112,8 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
...
...
@@ -122,22 +132,25 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
not
in
context
:
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
elif
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
def
__convert_to_v2__
(
method_name
,
name_prefix
=
None
,
parent_names
=
None
):
if
name_prefix
is
not
None
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
else
:
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
def
__init__
(
self
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
...
...
@@ -148,6 +161,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
name
=
kwargs
.
get
(
'name'
,
None
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
...
...
@@ -160,7 +174,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
...
...
@@ -191,6 +205,78 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
pass
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__inputs__
=
[]
if
input
is
not
None
:
self
.
__inputs__
=
input
other_kwargs
=
dict
()
other_kwargs
[
'name'
]
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
parent_layers
=
{
"input"
:
self
.
__inputs__
}
super
(
MixedLayerV2
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__inputs__
.
append
(
other
)
return
self
else
:
raise
MixedLayerTypeV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__inputs__
)
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
activation
.
Linear
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
...
...
@@ -226,32 +312,15 @@ sum_cost = __convert_to_v2__(
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost3
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
regression_cost
(
input
=
inference
,
label
=
label
)
cost6
=
regression_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
sum_cost
(
input
=
inference
)
cost11
=
huber_cost
(
input
=
score
,
label
=
label
)
print
parse_network
(
cost1
,
cost2
)
print
parse_network
(
cost3
,
cost4
)
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
# convert projection
for
prj
in
__projection_names__
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
])
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
])
python/paddle/v2/tests/test_layer.py
浏览文件 @
d425a5ca
...
...
@@ -19,8 +19,6 @@ import paddle.v2.activation as activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
...
...
@@ -58,6 +56,92 @@ class CostLayerTest(unittest.TestCase):
#print layer.parse_network(cost5, cost6)
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
def
test_projection
(
self
):
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
layer
.
fc
(
input
=
input
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
input
,
size
=
200
,
act
=
activation
.
Sigmoid
())
mixed0
=
layer
.
mixed
(
size
=
256
,
input
=
[
layer
.
full_matrix_projection
(
input
=
fc0
),
layer
.
full_matrix_projection
(
input
=
fc1
)
])
with
layer
.
mixed
(
size
=
200
)
as
mixed1
:
mixed1
+=
layer
.
full_matrix_projection
(
input
=
fc0
)
mixed1
+=
layer
.
identity_projection
(
input
=
fc1
)
table
=
layer
.
table_projection
(
input
=
word
)
emb0
=
layer
.
mixed
(
size
=
512
,
input
=
table
)
with
layer
.
mixed
(
size
=
512
)
as
emb1
:
emb1
+=
table
scale
=
layer
.
scaling_projection
(
input
=
fc0
)
scale0
=
layer
.
mixed
(
size
=
100
,
input
=
scale
)
with
layer
.
mixed
(
size
=
100
)
as
scale1
:
scale1
+=
scale
dotmul
=
layer
.
dotmul_projection
(
input
=
fc0
)
dotmul0
=
layer
.
mixed
(
size
=
100
,
input
=
dotmul
)
with
layer
.
mixed
(
size
=
100
)
as
dotmul1
:
dotmul1
+=
dotmul
context
=
layer
.
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
layer
.
mixed
(
size
=
100
,
input
=
context
)
with
layer
.
mixed
(
size
=
100
)
as
context1
:
context1
+=
context
conv
=
layer
.
conv_projection
(
input
=
input
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
,
bias_attr
=
True
)
with
layer
.
mixed
(
bias_attr
=
True
)
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
mixed0
)
print
layer
.
parse_network
(
mixed1
)
print
layer
.
parse_network
(
emb0
)
print
layer
.
parse_network
(
emb1
)
print
layer
.
parse_network
(
scale0
)
print
layer
.
parse_network
(
scale1
)
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
def
test_operator
(
self
):
ipt0
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
dotmul_op
=
layer
.
dotmul_operator
(
a
=
fc0
,
b
=
fc1
)
dotmul0
=
layer
.
mixed
(
input
=
dotmul_op
)
with
layer
.
mixed
()
as
dotmul1
:
dotmul1
+=
dotmul_op
conv
=
layer
.
conv_operator
(
img
=
ipt0
,
filter
=
ipt1
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
)
with
layer
.
mixed
()
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录