Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9a6926f5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9a6926f5
编写于
1月 05, 2021
作者:
C
cc
提交者:
GitHub
1月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] Add mkldnn interpolate op, support manual enable mkldnn interpolate op (#30083)
上级
c06350c9
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
714 addition
and
3 deletion
+714
-3
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
+67
-0
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.h
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.h
+41
-0
paddle/fluid/framework/ir/placement_pass_base.cc
paddle/fluid/framework/ir/placement_pass_base.cc
+25
-1
paddle/fluid/framework/ir/placement_pass_base.h
paddle/fluid/framework/ir/placement_pass_base.h
+1
-0
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+36
-2
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
+174
-0
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
.../tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
+201
-0
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
...d/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
+166
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+2
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
9a6926f5
...
...
@@ -108,6 +108,7 @@ if(WITH_MKLDNN)
pass_library
(
cpu_bfloat16_placement_pass inference DIR mkldnn
)
pass_library
(
cpu_bfloat16_pass inference DIR mkldnn
)
pass_library
(
fc_mkldnn_pass inference DIR mkldnn
)
pass_library
(
interpolate_mkldnn_pass inference DIR mkldnn
)
pass_library
(
cpu_quantize_placement_pass base DIR mkldnn
)
pass_library
(
cpu_quantize_pass inference DIR mkldnn
)
pass_library
(
cpu_quantize_squash_pass inference DIR mkldnn
)
...
...
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
0 → 100644
浏览文件 @
9a6926f5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
class
OpDesc
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Graph
;
void
InterpolateMKLDNNPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument should not be NULL."
));
if
(
!
(
graph
->
Has
(
"use_mkldnn"
)
&&
graph
->
Get
<
bool
>
(
"use_mkldnn"
)))
{
VLOG
(
3
)
<<
"Do not handle interpolate_mkldnn_pass"
;
return
;
}
VLOG
(
4
)
<<
"Handle interpolate_mkldnn_pass"
;
Init
(
"interpolate_mkldnn_pass"
,
graph
);
int
found_count
=
0
;
const
std
::
vector
<
std
::
string
>
interpolate_op_types
=
{
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
};
for
(
const
Node
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
std
::
find
(
interpolate_op_types
.
begin
(),
interpolate_op_types
.
end
(),
node
->
Name
())
!=
interpolate_op_types
.
end
())
{
auto
*
op_desc
=
node
->
Op
();
op_desc
->
SetAttr
(
"use_mkldnn"
,
true
);
++
found_count
;
}
}
AddStatis
(
found_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
interpolate_mkldnn_pass
,
paddle
::
framework
::
ir
::
InterpolateMKLDNNPass
);
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.h
0 → 100644
浏览文件 @
9a6926f5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Change the interpolate op to run MKLDNN.
*/
class
Graph
;
class
InterpolateMKLDNNPass
:
public
FusePassBase
{
public:
virtual
~
InterpolateMKLDNNPass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/placement_pass_base.cc
浏览文件 @
9a6926f5
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/placement_pass_base.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
...
...
@@ -33,7 +34,7 @@ void PlacementPassBase::ApplyImpl(ir::Graph* graph) const {
auto
*
op
=
n
->
Op
();
if
((
op
->
HasAttr
(
attr_name
)
||
op
->
HasProtoAttr
(
attr_name
))
&&
IsSupport
(
op
->
Type
()))
{
if
(
op_types_list
.
empty
())
{
if
(
op_types_list
.
empty
()
&&
IsDefaultOpTypes
(
op
->
Type
())
)
{
op
->
SetAttr
(
attr_name
,
true
);
}
else
if
(
std
::
find
(
op_types_list
.
begin
(),
op_types_list
.
end
(),
n
->
Name
())
!=
op_types_list
.
end
())
{
...
...
@@ -59,7 +60,30 @@ bool PlacementPassBase::IsSupport(const std::string& op_type) const {
}
}
}
else
if
(
GetAttrName
()
==
"use_mkldnn"
)
{
// This ops have use_mkldnn attr, but not support for now.
const
std
::
vector
<
std
::
string
>
op_types
=
{
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
};
return
std
::
find
(
op_types
.
begin
(),
op_types
.
end
(),
op_type
)
==
op_types
.
end
();
}
return
false
;
}
bool
PlacementPassBase
::
IsDefaultOpTypes
(
const
std
::
string
&
op_type
)
const
{
if
(
GetAttrName
()
==
"use_cudnn"
)
{
return
true
;
}
else
if
(
GetAttrName
()
==
"use_mkldnn"
)
{
// For interpolate ops, there's a little difference between Paddle and
// MKLDNN.
// If run MKLDNN interpolate ops, manual set AnalysisConfig and apply
// the corresponding pass.
const
std
::
vector
<
std
::
string
>
not_default_op_types
=
{
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
};
bool
is_interpolate_op
=
std
::
find
(
not_default_op_types
.
begin
(),
not_default_op_types
.
end
(),
op_type
)
!=
not_default_op_types
.
end
();
return
!
is_interpolate_op
;
}
return
false
;
}
...
...
paddle/fluid/framework/ir/placement_pass_base.h
浏览文件 @
9a6926f5
...
...
@@ -38,6 +38,7 @@ class PlacementPassBase : public Pass {
private:
bool
IsSupport
(
const
std
::
string
&
op_type
)
const
;
bool
IsDefaultOpTypes
(
const
std
::
string
&
op_type
)
const
;
#if PADDLE_WITH_TESTING
friend
class
PlacementPassTest
;
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
9a6926f5
...
...
@@ -14,6 +14,9 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -302,7 +305,6 @@ class InterpolateOp : public framework::OperatorWithKernel {
platform
::
errors
::
Unimplemented
(
"Input(X) dimension must be 3, 4 or 5, but got dimension = %d ."
,
dim_x
.
size
()));
if
(
dim_x
.
size
()
==
3
)
{
// shape check for 1D interpolate for input tensor shape NCHW
Interpolate1DInferShapeCheck
(
ctx
);
...
...
@@ -318,13 +320,42 @@ class InterpolateOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
#ifdef PADDLE_WITH_MKLDNN
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
// TODO(danqing): support other interp_method
if
(
this
->
CanMKLDNNBeUsed
(
ctx
)
&&
(
interp_method
==
"nearest"
||
interp_method
==
"bilinear"
))
{
layout
=
framework
::
DataLayout
::
kMKLDNN
;
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
(),
layout
,
library
);
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
override
{
#ifdef PADDLE_WITH_MKLDNN
if
((
expected_kernel_type
.
data_layout_
==
framework
::
DataLayout
::
kMKLDNN
)
&&
(
tensor
.
layout
()
!=
framework
::
DataLayout
::
kMKLDNN
))
{
auto
attrs
=
Attrs
();
auto
ar
=
paddle
::
framework
::
AttrReader
(
attrs
);
const
std
::
string
data_format
=
ar
.
Get
<
std
::
string
>
(
"data_layout"
);
auto
dl
=
framework
::
StringToDataLayout
(
data_format
);
// Some models may have intentionally set "AnyLayout" for pool
// op. Treat this as NCHW (default data_format value)
if
(
dl
!=
framework
::
DataLayout
::
kAnyLayout
)
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
dl
);
}
}
#endif
if
(
var_name
==
"SizeTensor"
||
var_name
==
"Scale"
)
{
return
expected_kernel_type
;
}
...
...
@@ -394,6 +425,9 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
"can be
\'
0
\'
for src_idx = scale*(dst_indx+0.5)-0.5 , "
"can be
\'
1
\'
for src_idx = scale*dst_index ."
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
...
...
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
0 → 100644
浏览文件 @
9a6926f5
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
DataLayout
;
using
dnnl
::
memory
;
using
dnnl
::
primitive
;
using
dnnl
::
reorder
;
using
dnnl
::
stream
;
using
dnnl
::
resampling_forward
;
using
platform
::
GetMKLDNNFormat
;
using
platform
::
to_void_cast
;
template
<
typename
T
=
float
>
class
InterpolateMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
resampling_forward
>
{
public:
InterpolateMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
paddle
::
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
dnnl
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
Tensor
*
z
,
const
std
::
string
&
uniq_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
resampling_forward
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
uniq_name
))
{
if
(
!
this
->
isCached
())
{
const
auto
src_x_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
dst_tz
=
framework
::
vectorize
(
z
->
dims
());
const
auto
src_md
=
dnnl
::
memory
::
desc
(
src_x_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
dst_md
=
memory
::
desc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
algo
,
src_md
,
dst_md
);
}
}
};
template
<
typename
T
=
float
>
class
InterpolateMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
std
::
vector
<
int
>
ComputeOutputShape
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
in_dims
=
x
->
dims
();
const
bool
is_channel_last
=
false
;
// In mkldnn kernel, always use NCHW
framework
::
DDim
in_dhw_dims
;
if
(
is_channel_last
)
{
// NDHWC, NHWC, NWC
in_dhw_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
}
else
{
// NCDHW, NCHW, NCW
in_dhw_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
std
::
vector
<
int
>
out_dims
;
if
(
in_dhw_dims
.
size
()
==
1
)
{
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_w"
));
}
else
if
(
in_dhw_dims
.
size
()
==
2
)
{
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_h"
));
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_w"
));
}
else
if
(
in_dhw_dims
.
size
()
==
3
)
{
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_d"
));
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_h"
));
out_dims
.
push_back
(
ctx
.
Attr
<
int
>
(
"out_w"
));
}
auto
list_new_size_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"SizeTensor"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
list_new_size_tensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
list_new_size_tensor
);
if
(
new_size
.
size
()
==
out_dims
.
size
())
{
out_dims
=
new_size
;
}
}
else
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
if
(
out_size_data
.
size
()
==
out_dims
.
size
())
{
out_dims
=
out_size_data
;
}
}
else
{
float
scale
;
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
else
{
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
}
if
(
scale
>
0
)
{
std
::
vector
<
int64_t
>
in_dhw_vec
=
framework
::
vectorize
(
in_dhw_dims
);
std
::
transform
(
in_dhw_vec
.
begin
(),
in_dhw_vec
.
end
(),
out_dims
.
begin
(),
[
&
](
int64_t
i
)
->
int
{
return
static_cast
<
int
>
(
i
*
scale
);
});
}
}
PADDLE_ENFORCE_GT
(
std
::
all_of
(
out_dims
.
begin
(),
out_dims
.
end
(),
[](
int
i
)
{
return
i
>
0
;
}),
0
,
platform
::
errors
::
InvalidArgument
(
"out_d, out_h, out_w of Op(interpolate) "
"should be greater than 0."
));
out_dims
.
insert
(
out_dims
.
begin
(),
in_dims
[
0
]);
if
(
is_channel_last
)
{
out_dims
.
push_back
(
in_dims
[
in_dims
.
size
()
-
1
]);
}
else
{
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
in_dims
[
1
]);
}
return
out_dims
;
}
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
std
::
vector
<
float
>
scale_prior
;
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
dnnl
::
algorithm
algo
=
(
interp_method
==
"nearest"
)
?
dnnl
::
algorithm
::
resampling_nearest
:
dnnl
::
algorithm
::
resampling_linear
;
auto
out_dims_vec
=
ComputeOutputShape
(
ctx
);
framework
::
DDim
dim_out
=
framework
::
make_ddim
(
out_dims_vec
);
z
->
mutable_data
<
T
>
(
dim_out
,
ctx
.
GetPlace
());
InterpolateMKLDNNHandler
<
T
>
handler
(
algo
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
z
,
ctx
.
OutputName
(
"Out"
));
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
z
);
auto
resampling_prim
=
handler
.
AcquireForwardPrimitive
();
const
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}};
mkldnn
::
stream
astream
(
mkldnn_engine
);
resampling_prim
->
execute
(
astream
,
args
);
astream
.
wait
();
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
nearest_interp
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
REGISTER_OP_KERNEL
(
bilinear_interp
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
0 → 100644
浏览文件 @
9a6926f5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.op_test
import
skip_check_grad_ci
def
bilinear_interp_mkldnn_np
(
input
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
,
data_layout
=
'NCHW'
):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
input
=
np
.
transpose
(
input
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
out
=
np
.
zeros
((
batch_size
,
channel
,
out_h
,
out_w
))
for
oh
in
range
(
out_h
):
h0
=
int
(
math
.
floor
((
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
))
h1
=
int
(
math
.
ceil
((
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
))
h0
=
max
(
h0
,
0
)
h1
=
min
(
h1
,
in_h
-
1
)
Wh
=
(
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
-
h0
for
ow
in
range
(
out_w
):
w0
=
int
(
math
.
floor
((
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
))
w1
=
int
(
math
.
ceil
((
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
))
w0
=
max
(
w0
,
0
)
w1
=
min
(
w1
,
in_w
-
1
)
Ww
=
(
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
-
w0
input_h0_w0
=
input
[:,
:,
h0
,
w0
]
input_h1_w0
=
input
[:,
:,
h1
,
w0
]
input_h0_w1
=
input
[:,
:,
h0
,
w1
]
input_h1_w1
=
input
[:,
:,
h1
,
w1
]
out
[:,
:,
oh
,
ow
]
=
input_h0_w0
*
(
1
-
Wh
)
*
(
1
-
Ww
)
+
input_h1_w0
*
Wh
*
(
1
-
Ww
)
+
input_h0_w1
*
(
1
-
Wh
)
*
Ww
+
input_h1_w1
*
Wh
*
Ww
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
input
.
dtype
)
@
skip_check_grad_ci
(
reason
=
"Haven not implement interpolate grad kernel."
)
class
TestBilinearInterpMKLDNNOp
(
OpTest
):
def
init_test_case
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"bilinear_interp"
self
.
interp_method
=
'bilinear'
self
.
_cpu_only
=
True
self
.
use_mkldnn
=
True
self
.
input_shape
=
[
1
,
1
,
2
,
2
]
self
.
data_layout
=
'NCHW'
# priority: actual_shape > out_size > scale > out_h & out_w
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
2.0
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
if
self
.
scale
>
0
:
out_h
=
int
(
in_h
*
self
.
scale
)
out_w
=
int
(
in_w
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_mkldnn_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestBilinearInterpOpMKLDNNNHWC
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
27
self
.
out_w
=
49
self
.
scale
=
2.0
self
.
data_layout
=
'NHWC'
class
TestBilinearNeighborInterpMKLDNNCase2
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
1.
class
TestBilinearNeighborInterpDataLayout
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
4
,
4
,
5
]
self
.
out_h
=
6
self
.
out_w
=
7
self
.
scale
=
0.
self
.
data_layout
=
"NHWC"
class
TestBilinearNeighborInterpCase3
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
class
TestBilinearNeighborInterpCase4
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpCase5
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
13
,
13
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpCase6
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpSame
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
0 → 100755
浏览文件 @
9a6926f5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.op_test
import
skip_check_grad_ci
def
nearest_neighbor_interp_mkldnn_np
(
X
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
,
data_layout
=
'NCHW'
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
X
=
np
.
transpose
(
X
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
fh
=
fw
=
0.0
if
(
out_h
>
1
):
fh
=
out_h
*
1.0
/
in_h
if
(
out_w
>
1
):
fw
=
out_w
*
1.0
/
in_w
out
=
np
.
zeros
((
n
,
c
,
out_h
,
out_w
))
for
oh
in
range
(
out_h
):
ih
=
int
(
round
((
oh
+
0.5
)
/
fh
-
0.5
))
for
ow
in
range
(
out_w
):
iw
=
int
(
round
((
ow
+
0.5
)
/
fw
-
0.5
))
out
[:,
:,
oh
,
ow
]
=
X
[:,
:,
ih
,
iw
]
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
X
.
dtype
)
@
skip_check_grad_ci
(
reason
=
"Haven not implement interpolate grad kernel."
)
class
TestNearestInterpMKLDNNOp
(
OpTest
):
def
init_test_case
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"nearest_interp"
self
.
interp_method
=
'nearest'
self
.
_cpu_only
=
True
self
.
use_mkldnn
=
True
self
.
input_shape
=
[
1
,
1
,
2
,
2
]
self
.
data_layout
=
'NCHW'
# priority: actual_shape > out_size > scale > out_h & out_w
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
2.0
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
if
self
.
scale
>
0
:
out_h
=
int
(
in_h
*
self
.
scale
)
out_w
=
int
(
in_w
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_mkldnn_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestNearestInterpOpMKLDNNNHWC
(
TestNearestInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
27
self
.
out_w
=
49
self
.
scale
=
2.0
self
.
data_layout
=
'NHWC'
class
TestNearestNeighborInterpMKLDNNCase2
(
TestNearestInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
1.
class
TestNearestNeighborInterpCase3
(
TestNearestInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
class
TestNearestNeighborInterpCase4
(
TestNearestInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpSame
(
TestNearestInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
9a6926f5
...
...
@@ -596,6 +596,8 @@ STATIC_MODE_TESTING_LIST = [
'test_elementwise_mul_bf16_mkldnn_op'
,
'test_fc_mkldnn_op'
,
'test_fc_bf16_mkldnn_op'
,
'test_nearest_interp_mkldnn_op'
,
'test_bilinear_interp_mkldnn_op'
,
'test_fusion_gru_int8_mkldnn_op'
,
'test_fusion_gru_mkldnn_op'
,
'test_gaussian_random_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录