Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c06350c9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c06350c9
编写于
1月 04, 2021
作者:
Z
Zhou Wei
提交者:
GitHub
1月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry pick 2.0]support deepcopy for Layer/Tensor/Paramerbase (#29387) (#29873)
* support deepcopy for Layer/Tensor/Paramerbase * fix some code
上级
878b6972
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
242 addition
and
27 deletion
+242
-27
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+30
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+2
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+8
-0
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+20
-8
python/paddle/fluid/dygraph/varbase_patch_methods.py
python/paddle/fluid/dygraph/varbase_patch_methods.py
+34
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+31
-0
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+23
-15
python/paddle/fluid/tests/unittests/test_parameter.py
python/paddle/fluid/tests/unittests/test_parameter.py
+31
-3
python/paddle/fluid/tests/unittests/test_var_base.py
python/paddle/fluid/tests/unittests/test_var_base.py
+63
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
c06350c9
...
...
@@ -283,6 +283,36 @@ std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
}
}
void
VarBase
::
CopyFrom
(
const
VarBase
&
src
,
const
bool
blocking
)
{
if
(
SharedVar
()
->
IsEmpty
())
{
VLOG
(
3
)
<<
"deep copy Variable from "
<<
src
.
Name
()
<<
" to "
<<
Name
();
SetPersistable
(
src
.
Persistable
());
SetDataType
(
src
.
DataType
());
SetType
(
src
.
Type
());
SetOverridedStopGradient
(
src
.
OverridedStopGradient
());
if
(
!
src
.
SharedVar
()
->
IsEmpty
())
{
const
platform
::
Place
&
place
=
src
.
Place
();
if
(
src
.
Var
().
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
src_tensor
=
src
.
Var
().
Get
<
framework
::
LoDTensor
>
();
auto
*
dst_tensor
=
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
dst_tensor
->
set_lod
(
src_tensor
.
lod
());
framework
::
TensorCopy
(
src_tensor
,
place
,
dst_tensor
);
}
else
if
(
src
.
Var
().
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
src_selected_rows
=
src
.
Var
().
Get
<
framework
::
SelectedRows
>
();
auto
*
dst_selected_rows
=
MutableVar
()
->
GetMutable
<
framework
::
SelectedRows
>
();
dst_selected_rows
->
set_height
(
src_selected_rows
.
height
());
dst_selected_rows
->
set_rows
(
src_selected_rows
.
rows
());
framework
::
TensorCopy
(
src_selected_rows
.
value
(),
place
,
dst_selected_rows
->
mutable_value
());
}
if
(
blocking
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
)
->
Wait
();
}
}
}
}
void
VarBase
::
BumpInplaceVersion
()
{
PADDLE_ENFORCE_EQ
(
Var
().
IsInitialized
(),
true
,
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
c06350c9
...
...
@@ -216,6 +216,8 @@ class VarBase {
std
::
shared_ptr
<
VarBase
>
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
;
void
CopyFrom
(
const
imperative
::
VarBase
&
src
,
bool
blocking
);
void
BumpInplaceVersion
();
private:
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
c06350c9
...
...
@@ -526,6 +526,13 @@ void BindImperative(py::module *m_ptr) {
py
::
class_
<
imperative
::
VarBase
,
std
::
shared_ptr
<
imperative
::
VarBase
>>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def_static
(
"_alive_vars"
,
&
imperative
::
VarBase
::
AliveVarNames
)
.
def
(
"__init__"
,
[](
imperative
::
VarBase
&
self
)
{
std
::
string
name
=
imperative
::
GetCurrentTracer
()
->
GenerateUniqueName
(
"generated_tensor"
);
new
(
&
self
)
imperative
::
VarBase
(
name
);
})
.
def
(
"__init__"
,
[](
imperative
::
VarBase
&
self
,
framework
::
proto
::
VarType
::
Type
dtype
,
const
std
::
vector
<
int
>
&
dims
,
const
py
::
handle
&
name
,
...
...
@@ -1023,6 +1030,7 @@ void BindImperative(py::module *m_ptr) {
y = x.cuda(1)
print(y.place) # CUDAPlace(1)
)DOC"
)
.
def
(
"copy_"
,
&
imperative
::
VarBase
::
CopyFrom
)
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
);
},
...
...
python/paddle/fluid/dygraph/layers.py
浏览文件 @
c06350c9
...
...
@@ -21,6 +21,7 @@ import re
import
copy
import
weakref
import
warnings
from
copy
import
deepcopy
from
.
import
parallel_helper
from
..
import
unique_name
...
...
@@ -1016,15 +1017,26 @@ class Layer(core.Layer):
self
.
_parameters
[
name
]
=
parameter
return
parameter
def
__getstate__
(
self
):
return
self
.
__dict__
def
__setstate__
(
self
,
state
):
self
.
__dict__
.
update
(
state
)
def
__getattr__
(
self
,
name
):
if
name
in
self
.
_parameters
:
return
self
.
_parameters
[
name
]
elif
name
in
self
.
_sub_layers
:
return
self
.
_sub_layers
[
name
]
elif
name
in
self
.
_buffers
:
return
self
.
_buffers
[
name
]
else
:
return
object
.
__getattribute__
(
self
,
name
)
if
'_parameters'
in
self
.
__dict__
:
_parameters
=
self
.
__dict__
[
'_parameters'
]
if
name
in
self
.
_parameters
:
return
self
.
_parameters
[
name
]
if
'_sub_layers'
in
self
.
__dict__
:
_sub_layers
=
self
.
__dict__
[
'_sub_layers'
]
if
name
in
self
.
_sub_layers
:
return
self
.
_sub_layers
[
name
]
if
'_buffers'
in
self
.
__dict__
:
_buffers
=
self
.
__dict__
[
'_buffers'
]
if
name
in
_buffers
:
return
_buffers
[
name
]
return
object
.
__getattribute__
(
self
,
name
)
def
__setattr__
(
self
,
name
,
value
):
def
_remove_if_exist
(
*
dicts
):
...
...
python/paddle/fluid/dygraph/varbase_patch_methods.py
浏览文件 @
c06350c9
...
...
@@ -18,6 +18,7 @@ import numpy as np
import
paddle
from
..
import
framework
from
..
import
core
from
..
import
unique_name
from
..framework
import
Variable
,
Parameter
,
ParamBase
from
.base
import
switch_to_static_graph
from
.math_op_patch
import
monkey_patch_math_varbase
...
...
@@ -263,6 +264,37 @@ def monkey_patch_varbase():
from
paddle.tensor.to_string
import
to_string
return
to_string
(
self
)
def
__deepcopy__
(
self
,
memo
):
"""
Deep copy Tensor, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
x = paddle.to_tensor(2.)
y = copy.deepcopy(x)
print(x)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
print(y)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
"""
if
not
self
.
is_leaf
:
raise
RuntimeError
(
"Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
)
new_varbase
=
core
.
VarBase
()
new_varbase
.
name
=
self
.
name
+
unique_name
.
generate
(
"_deepcopy"
)
memo
[
id
(
self
)]
=
new_varbase
new_varbase
.
copy_
(
self
,
True
)
return
new_varbase
@
property
def
block
(
self
):
return
framework
.
default_main_program
().
global_block
()
...
...
@@ -283,7 +315,8 @@ def monkey_patch_varbase():
(
"block"
,
block
),
(
"backward"
,
backward
),
(
"clear_grad"
,
clear_grad
),
(
"inplace_version"
,
inplace_version
),
(
"grad"
,
grad
),
(
"gradient"
,
gradient
),
(
"__str__"
,
__str__
),
(
"__repr__"
,
__str__
),
(
"__module__"
,
"paddle"
),
(
"__name__"
,
"Tensor"
)):
(
"__deepcopy__"
,
__deepcopy__
),
(
"__module__"
,
"paddle"
),
(
"__name__"
,
"Tensor"
)):
setattr
(
core
.
VarBase
,
method_name
,
method
)
# patch math methods for varbase
...
...
python/paddle/fluid/framework.py
浏览文件 @
c06350c9
...
...
@@ -23,6 +23,7 @@ import os
import
re
import
traceback
import
six
import
copy
import
numpy
as
np
import
subprocess
...
...
@@ -5322,6 +5323,36 @@ class ParamBase(core.VarBase):
return
"Parameter containing:
\n
{tensor}"
.
format
(
tensor
=
super
(
ParamBase
,
self
).
__str__
())
def
__deepcopy__
(
self
,
memo
):
"""
Deep copy parameter, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
linear = paddle.nn.Linear(1, 3)
linear_copy = copy.deepcopy(linear)
print(linear.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
print(linear_copy.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
"""
state
=
copy
.
deepcopy
(
self
.
__dict__
,
memo
)
state
[
"name"
]
=
self
.
name
+
unique_name
.
generate
(
"_deepcopy"
)
new_param
=
ParamBase
(
self
.
shape
,
self
.
dtype
,
**
state
)
memo
[
id
(
self
)]
=
new_param
new_param
.
copy_
(
self
,
True
)
return
new_param
__repr__
=
__str__
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
c06350c9
...
...
@@ -287,7 +287,6 @@ class TestImperative(unittest.TestCase):
with
paddle
.
no_grad
():
self
.
assertTrue
(
l1
.
weight
.
stop_gradient
is
False
)
tmp
=
l1
.
weight
*
2
print
(
tmp
)
self
.
assertTrue
(
tmp
.
stop_gradient
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
y
=
l0
(
x
)
+
tmp
...
...
@@ -485,15 +484,15 @@ class TestImperative(unittest.TestCase):
for
i
in
range
(
10
):
y
=
paddle
.
pow
(
x
,
4.0
)
y
.
backward
()
print
(
x
.
grad
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
x
.
clear_gradient
()
self
.
assertEqual
(
x
.
grad
,
0.
)
for
i
in
range
(
5
):
for
i
in
range
(
10
):
y
=
paddle
.
pow
(
x
,
4.0
)
y
.
backward
()
print
(
x
.
grad
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
x
.
clear_grad
()
self
.
assertEqual
(
x
.
grad
,
0.
)
def
test_simple_net
(
sort_sum_gradient
):
fluid
.
set_flags
({
'FLAGS_sort_sum_gradient'
:
sort_sum_gradient
})
...
...
@@ -504,9 +503,18 @@ class TestImperative(unittest.TestCase):
def
fun
(
x
,
y
,
z
):
loss1
=
x
*
x
*
y
loss2
=
x
*
z
loss1
.
backward
(
retain_graph
=
True
)
loss2
.
backward
(
retain_graph
=
True
)
self
.
assertTrue
(
np
.
array_equal
(
x
.
grad
,
[
23.
]))
self
.
assertTrue
(
np
.
array_equal
(
y
.
grad
,
[
25.
]))
self
.
assertTrue
(
np
.
array_equal
(
z
.
grad
,
[
5.
]))
x
.
clear_grad
()
y
.
clear_grad
()
z
.
clear_grad
()
dx
=
paddle
.
grad
([
loss1
],
x
,
create_graph
=
True
)[
0
]
# loss = x*x*y + x*z + 2*x*y
loss
=
loss1
+
loss2
+
dx
# loss = x*x*y + x*z + 2*x*y
return
loss
loss
=
fun
(
x
,
y
,
z
)
...
...
@@ -539,12 +547,12 @@ class TestImperative(unittest.TestCase):
# generate the gradient of each step
mlp2
=
MLP
(
input_size
=
input_size
)
expected_weight1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
weight
.
shape
)
expected_bias1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
bias
.
shape
)
expected_weight2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
weight
.
shape
)
expected_bias2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
bias
.
shape
)
expected_weight1_grad
=
0.
expected_bias1_grad
=
0.
expected_weight2_grad
=
0.
expected_bias2_grad
=
0.
for
batch_id
in
range
(
24
):
for
batch_id
in
range
(
100
):
x
=
paddle
.
uniform
([
10
,
input_size
])
detach_x
=
x
.
detach
()
clear_loss
=
mlp2
(
detach_x
)
...
...
@@ -571,12 +579,12 @@ class TestImperative(unittest.TestCase):
mlp2
.
clear_gradients
()
self
.
assertTrue
(
np
.
array_equal
(
clear_loss
.
grad
,
[
1
]))
if
((
batch_id
+
1
)
%
8
)
==
0
:
if
((
batch_id
+
1
)
%
10
)
==
0
:
mlp1
.
clear_gradients
()
expected_weight1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
weight
.
shape
)
expected_bias1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
bias
.
shape
)
expected_weight2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
weight
.
shape
)
expected_bias2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
bias
.
shape
)
expected_weight1_grad
=
0.
expected_bias1_grad
=
0.
expected_weight2_grad
=
0.
expected_bias2_grad
=
0.
with
fluid
.
dygraph
.
guard
():
test_single_api
(
False
)
...
...
python/paddle/fluid/tests/unittests/test_parameter.py
浏览文件 @
c06350c9
...
...
@@ -15,6 +15,9 @@
from
__future__
import
print_function
import
unittest
import
copy
import
paddle
from
paddle.fluid.dygraph
import
guard
from
paddle.fluid.framework
import
default_main_program
import
paddle.fluid.core
as
core
from
paddle.fluid.executor
import
Executor
...
...
@@ -26,7 +29,7 @@ main_program = default_main_program()
class
ParameterChecks
(
unittest
.
TestCase
):
def
check_param
(
self
):
def
check_param
eter
(
self
):
shape
=
[
784
,
100
]
val
=
1.0625
b
=
main_program
.
global_block
()
...
...
@@ -46,6 +49,28 @@ class ParameterChecks(unittest.TestCase):
p
=
io
.
get_parameter_value_by_name
(
'fc.w'
,
exe
,
main_program
)
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
p
),
np
.
ones
(
shape
)
*
val
))
def
check_parambase
(
self
):
with
guard
():
linear
=
paddle
.
nn
.
Linear
(
10
,
10
)
param
=
linear
.
weight
memo
=
{}
param_copy
=
copy
.
deepcopy
(
param
,
memo
)
self
.
assertEqual
(
param_copy
.
shape
,
param
.
shape
)
self
.
assertEqual
(
param_copy
.
type
,
param
.
type
)
self
.
assertEqual
(
param_copy
.
dtype
,
param
.
dtype
)
self
.
assertEqual
(
str
(
param_copy
.
place
),
str
(
param
.
place
))
self
.
assertTrue
(
np
.
array_equal
(
param_copy
.
numpy
(),
param
.
numpy
()))
self
.
assertEqual
(
param_copy
.
optimize_attr
,
param
.
optimize_attr
)
self
.
assertEqual
(
param_copy
.
regularizer
,
param
.
regularizer
)
self
.
assertEqual
(
param_copy
.
do_model_average
,
param
.
do_model_average
)
self
.
assertEqual
(
param_copy
.
need_clip
,
param
.
need_clip
)
self
.
assertEqual
(
param_copy
.
is_distributed
,
param
.
is_distributed
)
pram_copy2
=
copy
.
deepcopy
(
param
,
memo
)
self
.
assertEqual
(
id
(
param_copy
),
id
(
pram_copy2
))
def
check_exceptions
(
self
):
b
=
main_program
.
global_block
()
with
self
.
assertRaises
(
ValueError
):
...
...
@@ -63,8 +88,11 @@ class ParameterChecks(unittest.TestCase):
class
TestParameter
(
ParameterChecks
):
def
test_param
(
self
):
self
.
check_param
()
def
_test_parameter
(
self
):
self
.
check_parameter
()
def
test_parambase
(
self
):
self
.
check_parambase
()
def
test_exceptions
(
self
):
self
.
check_exceptions
()
...
...
python/paddle/fluid/tests/unittests/test_var_base.py
浏览文件 @
c06350c9
...
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
six
import
copy
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -264,6 +265,68 @@ class TestVarBase(unittest.TestCase):
var
.
stop_gradient
=
False
self
.
assertEqual
(
var
.
stop_gradient
,
False
)
def
test_deep_copy
(
self
):
with
fluid
.
dygraph
.
guard
():
empty_var
=
core
.
VarBase
()
empty_var_copy
=
copy
.
deepcopy
(
empty_var
)
self
.
assertEqual
(
empty_var
.
stop_gradient
,
empty_var_copy
.
stop_gradient
)
self
.
assertEqual
(
empty_var
.
persistable
,
empty_var_copy
.
persistable
)
self
.
assertEqual
(
empty_var
.
type
,
empty_var_copy
.
type
)
self
.
assertEqual
(
empty_var
.
dtype
,
empty_var_copy
.
dtype
)
x
=
paddle
.
to_tensor
([
2.
],
stop_gradient
=
False
)
y
=
paddle
.
to_tensor
([
3.
],
stop_gradient
=
False
)
z
=
x
*
y
memo
=
{}
x_copy
=
copy
.
deepcopy
(
x
,
memo
)
y_copy
=
copy
.
deepcopy
(
y
,
memo
)
self
.
assertEqual
(
x_copy
.
stop_gradient
,
y_copy
.
stop_gradient
)
self
.
assertEqual
(
x_copy
.
persistable
,
y_copy
.
persistable
)
self
.
assertEqual
(
x_copy
.
type
,
y_copy
.
type
)
self
.
assertEqual
(
x_copy
.
dtype
,
y_copy
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
x
.
numpy
(),
x_copy
.
numpy
()))
self
.
assertTrue
(
np
.
array_equal
(
y
.
numpy
(),
y_copy
.
numpy
()))
self
.
assertNotEqual
(
id
(
x
),
id
(
x_copy
))
x_copy
[:]
=
5.
self
.
assertTrue
(
np
.
array_equal
(
x_copy
.
numpy
(),
[
5.
]))
self
.
assertTrue
(
np
.
array_equal
(
x
.
numpy
(),
[
2.
]))
with
self
.
assertRaises
(
RuntimeError
):
copy
.
deepcopy
(
z
)
x_copy2
=
copy
.
deepcopy
(
x
,
memo
)
y_copy2
=
copy
.
deepcopy
(
y
,
memo
)
self
.
assertEqual
(
id
(
x_copy
),
id
(
x_copy2
))
self
.
assertEqual
(
id
(
y_copy
),
id
(
y_copy2
))
# test copy selected rows
x
=
core
.
VarBase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
3
,
100
],
"selected_rows"
,
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
True
)
selected_rows
=
x
.
value
().
get_selected_rows
()
selected_rows
.
get_tensor
().
set
(
np
.
random
.
rand
(
3
,
100
),
core
.
CPUPlace
())
selected_rows
.
set_height
(
10
)
selected_rows
.
set_rows
([
3
,
5
,
7
])
x_copy
=
copy
.
deepcopy
(
x
)
self
.
assertEqual
(
x_copy
.
stop_gradient
,
x
.
stop_gradient
)
self
.
assertEqual
(
x_copy
.
persistable
,
x
.
persistable
)
self
.
assertEqual
(
x_copy
.
type
,
x
.
type
)
self
.
assertEqual
(
x_copy
.
dtype
,
x
.
dtype
)
copy_selected_rows
=
x_copy
.
value
().
get_selected_rows
()
self
.
assertEqual
(
copy_selected_rows
.
height
(),
selected_rows
.
height
())
self
.
assertEqual
(
copy_selected_rows
.
rows
(),
selected_rows
.
rows
())
self
.
assertTrue
(
np
.
array_equal
(
np
.
array
(
copy_selected_rows
.
get_tensor
()),
np
.
array
(
selected_rows
.
get_tensor
())))
# test some patched methods
def
test_set_value
(
self
):
with
fluid
.
dygraph
.
guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录