未验证 提交 94fe929a 编写于 作者: H haosicheng 提交者: GitHub

[XPU] add set_value and set_value_grad (#48845)

上级 95332bef
......@@ -417,6 +417,13 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::FLOAT32})},
{"sampling_id",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT64})},
{"set_value",
XPUKernelSet({phi::DataType::INT32,
phi::DataType::INT64,
phi::DataType::FLOAT16,
phi::DataType::FLOAT32})},
{"set_value_grad",
XPUKernelSet({phi::DataType::FLOAT16, phi::DataType::FLOAT32})},
{"sgd", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
{"sgd_dense_param_sparse_grad",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/set_value_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace phi {
template <typename T, typename Context>
void SetValueGradKernel(const Context& dev_ctx,
const DenseTensor& out_grad,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
DenseTensor* x_grad,
DenseTensor* value_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
x_grad->Resize(out_grad.dims());
dev_ctx.template Alloc<T>(x_grad);
dev_ctx.template Alloc<T>(value_grad);
const XPUType* dy_data = reinterpret_cast<const XPUType*>(out_grad.data<T>());
XPUType* dx_data = reinterpret_cast<XPUType*>(x_grad->data<T>());
XPUType* dv_data = reinterpret_cast<XPUType*>(value_grad->data<T>());
std::vector<int64_t> starts_vec = starts.GetData();
std::vector<int64_t> ends_vec = ends.GetData();
std::vector<int64_t> steps_vec = steps.GetData();
auto dy_dims = out_grad.dims();
std::vector<int> dy_shape;
for (int i = 0; i < dy_dims.size(); ++i) {
dy_shape.push_back(dy_dims[i]);
}
auto dv_dims = value_grad->dims();
std::vector<int> dv_shape;
for (int i = 0; i < dv_dims.size(); ++i) {
dv_shape.push_back(dv_dims[i]);
}
auto dx_dims = x_grad->dims();
std::vector<int> dx_shape;
for (int i = 0; i < dx_dims.size(); ++i) {
dx_shape.push_back(dx_dims[i]);
}
std::vector<int> starts_vec_int32;
for (size_t i = 0; i < starts_vec.size(); ++i) {
starts_vec_int32.push_back(starts_vec[i]);
}
std::vector<int> ends_vec_int32;
for (size_t i = 0; i < ends_vec.size(); ++i) {
ends_vec_int32.push_back(ends_vec[i]);
}
std::vector<int> steps_vec_int32;
for (size_t i = 0; i < steps_vec.size(); ++i) {
steps_vec_int32.push_back(steps_vec[i]);
}
std::vector<int> axes_int32;
for (size_t i = 0; i < axes.size(); ++i) {
axes_int32.push_back(axes[i]);
}
std::vector<int> decrease_axes_int32;
for (size_t i = 0; i < decrease_axes.size(); ++i) {
decrease_axes_int32.push_back(decrease_axes[i]);
}
std::vector<int> none_axes_int32;
for (size_t i = 0; i < none_axes.size(); ++i) {
none_axes_int32.push_back(none_axes[i]);
}
int r = xpu::set_value_grad(dev_ctx.x_context(),
dy_data,
dx_data,
dv_data,
dy_shape,
dv_shape,
starts_vec_int32,
ends_vec_int32,
steps_vec_int32,
axes_int32,
decrease_axes_int32,
none_axes_int32);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value_grad");
}
} // namespace phi
PD_REGISTER_KERNEL(set_value_grad,
XPU,
ALL_LAYOUT,
phi::SetValueGradKernel,
float,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/set_value_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace phi {
template <typename T, typename Context>
void SetTensorValueKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& value,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
out->Resize(x.dims());
dev_ctx.template Alloc<T>(out);
const XPUType* x_data = reinterpret_cast<const XPUType*>(x.data<T>());
const XPUType* v_data = reinterpret_cast<const XPUType*>(value.data<T>());
XPUType* y_data = reinterpret_cast<XPUType*>(out->data<T>());
std::vector<int64_t> starts_vec = starts.GetData();
std::vector<int64_t> ends_vec = ends.GetData();
std::vector<int64_t> steps_vec = steps.GetData();
std::vector<int> starts_vec_int32;
for (size_t i = 0; i < starts_vec.size(); ++i) {
starts_vec_int32.push_back(starts_vec[i]);
}
std::vector<int> ends_vec_int32;
for (size_t i = 0; i < ends_vec.size(); ++i) {
ends_vec_int32.push_back(ends_vec[i]);
}
std::vector<int> steps_vec_int32;
for (size_t i = 0; i < steps_vec.size(); ++i) {
steps_vec_int32.push_back(steps_vec[i]);
}
std::vector<int> axes_int32;
for (size_t i = 0; i < axes.size(); ++i) {
axes_int32.push_back(axes[i]);
}
std::vector<int> decrease_axes_int32;
for (size_t i = 0; i < decrease_axes.size(); ++i) {
decrease_axes_int32.push_back(decrease_axes[i]);
}
std::vector<int> none_axes_int32;
for (size_t i = 0; i < none_axes.size(); ++i) {
none_axes_int32.push_back(none_axes[i]);
}
auto x_dims = x.dims();
std::vector<int> x_shape;
for (int i = 0; i < x_dims.size(); ++i) {
x_shape.push_back(x_dims[i]);
}
auto v_dims = value.dims();
std::vector<int> v_shape;
for (int i = 0; i < v_dims.size(); ++i) {
v_shape.push_back(v_dims[i]);
}
int r = xpu::set_value(dev_ctx.x_context(),
x_data,
v_data,
y_data,
x_shape,
v_shape,
starts_vec_int32,
ends_vec_int32,
steps_vec_int32,
axes_int32,
decrease_axes_int32,
none_axes_int32);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value");
}
template <typename T, typename Context>
void SetValueKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
const std::vector<int64_t>& shape,
const std::vector<Scalar>& values,
DenseTensor* out) {
std::vector<T> assgin_values;
assgin_values.reserve(values.size());
for (const auto& val : values) {
assgin_values.push_back(val.to<T>());
}
DenseTensor value_tensor = Empty<T>(dev_ctx, shape);
paddle::framework::TensorFromVector(assgin_values, dev_ctx, &value_tensor);
value_tensor.Resize(phi::make_ddim(shape));
SetTensorValueKernel<T, Context>(dev_ctx,
x,
value_tensor,
starts,
ends,
steps,
axes,
decrease_axes,
none_axes,
out);
}
} // namespace phi
PD_REGISTER_KERNEL(set_value,
XPU,
ALL_LAYOUT,
phi::SetValueKernel,
float,
phi::dtype::float16,
int,
int64_t) {}
PD_REGISTER_KERNEL(set_value_with_tensor,
XPU,
ALL_LAYOUT,
phi::SetTensorValueKernel,
float,
phi::dtype::float16,
int,
int64_t) {}
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Test set_value op in static mode
import sys
import unittest
import numpy as np
sys.path.append("../")
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import (
XPUOpTestWrapper,
create_test_class,
get_xpu_op_support_types,
)
import paddle
from paddle.fluid.framework import _test_eager_guard
class XPUTestSetValueOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'set_value'
self.use_dynamic_create_class = False
class TestSetValueOp(XPUOpTest):
def setUp(self):
paddle.enable_static()
self.__class__.op_type = "set_value"
self.place = paddle.XPUPlace(0)
self.shape = [2]
self.value = 6
self.dtype = "float32"
self.__class__.dtype = self.dtype
self.data = np.ones(self.shape).astype(self.dtype)
self.program = paddle.static.Program()
def _call_setitem(self, x):
x[0] = self.value
def _get_answer(self):
self.data[0] = self.value
class TestSetValueOp1(TestSetValueOp):
def _run_static(self):
paddle.enable_static()
with paddle.static.program_guard(self.program):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
self._call_setitem(x)
exe = paddle.static.Executor(paddle.XPUPlace(0))
out = exe.run(self.program, fetch_list=[x])
paddle.disable_static()
return out
def func_test_api(self):
static_out = self._run_static()
self._get_answer()
error_msg = (
"\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
)
self.assertTrue(
(self.data == static_out).all(),
msg=error_msg.format("static", self.data, static_out),
)
def test_api(self):
with _test_eager_guard():
self.func_test_api()
self.func_test_api()
support_types = get_xpu_op_support_types('set_value')
for stype in support_types:
create_test_class(globals(), XPUTestSetValueOp, stype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册