diff --git a/paddle/phi/backends/xpu/xpu2_op_list.cc b/paddle/phi/backends/xpu/xpu2_op_list.cc index cd68540017001cc0575ad5a86c2e1a4f0cbab3da..3b337b0b09afdbfa350f6e5c8cb2adc861f7b451 100644 --- a/paddle/phi/backends/xpu/xpu2_op_list.cc +++ b/paddle/phi/backends/xpu/xpu2_op_list.cc @@ -417,6 +417,13 @@ XPUOpMap& get_kl2_ops() { phi::DataType::FLOAT32})}, {"sampling_id", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT64})}, + {"set_value", + XPUKernelSet({phi::DataType::INT32, + phi::DataType::INT64, + phi::DataType::FLOAT16, + phi::DataType::FLOAT32})}, + {"set_value_grad", + XPUKernelSet({phi::DataType::FLOAT16, phi::DataType::FLOAT32})}, {"sgd", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})}, {"sgd_dense_param_sparse_grad", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})}, diff --git a/paddle/phi/kernels/xpu/set_value_grad_kernel.cc b/paddle/phi/kernels/xpu/set_value_grad_kernel.cc new file mode 100644 index 0000000000000000000000000000000000000000..c759bf20f22e08e967e734cd17e8ba2bfdf36baf --- /dev/null +++ b/paddle/phi/kernels/xpu/set_value_grad_kernel.cc @@ -0,0 +1,128 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/set_value_grad_kernel.h" + +#include "paddle/phi/backends/xpu/enforce_xpu.h" +#include "paddle/phi/backends/xpu/xpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +#include "paddle/phi/common/int_array.h" +#include "paddle/phi/common/scalar.h" +#include "paddle/phi/core/dense_tensor.h" +#include "paddle/phi/core/tensor_utils.h" +#include "paddle/phi/kernels/empty_kernel.h" +#include "paddle/phi/kernels/funcs/broadcast_function.h" +#include "paddle/phi/kernels/funcs/eigen/common.h" +#include "paddle/phi/kernels/funcs/eigen/eigen_function.h" +#include "paddle/phi/kernels/funcs/elementwise_functor.h" +#include "paddle/phi/kernels/funcs/slice_utils.h" + +namespace phi { + +template +void SetValueGradKernel(const Context& dev_ctx, + const DenseTensor& out_grad, + const IntArray& starts, + const IntArray& ends, + const IntArray& steps, + const std::vector& axes, + const std::vector& decrease_axes, + const std::vector& none_axes, + DenseTensor* x_grad, + DenseTensor* value_grad) { + using XPUType = typename XPUTypeTrait::Type; + x_grad->Resize(out_grad.dims()); + dev_ctx.template Alloc(x_grad); + dev_ctx.template Alloc(value_grad); + + const XPUType* dy_data = reinterpret_cast(out_grad.data()); + XPUType* dx_data = reinterpret_cast(x_grad->data()); + XPUType* dv_data = reinterpret_cast(value_grad->data()); + + std::vector starts_vec = starts.GetData(); + std::vector ends_vec = ends.GetData(); + std::vector steps_vec = steps.GetData(); + + auto dy_dims = out_grad.dims(); + std::vector dy_shape; + for (int i = 0; i < dy_dims.size(); ++i) { + dy_shape.push_back(dy_dims[i]); + } + + auto dv_dims = value_grad->dims(); + std::vector dv_shape; + for (int i = 0; i < dv_dims.size(); ++i) { + dv_shape.push_back(dv_dims[i]); + } + + auto dx_dims = x_grad->dims(); + std::vector dx_shape; + for (int i = 0; i < dx_dims.size(); ++i) { + dx_shape.push_back(dx_dims[i]); + } + + std::vector starts_vec_int32; + for (size_t i = 0; i < starts_vec.size(); ++i) { + starts_vec_int32.push_back(starts_vec[i]); + } + + std::vector ends_vec_int32; + for (size_t i = 0; i < ends_vec.size(); ++i) { + ends_vec_int32.push_back(ends_vec[i]); + } + + std::vector steps_vec_int32; + for (size_t i = 0; i < steps_vec.size(); ++i) { + steps_vec_int32.push_back(steps_vec[i]); + } + + std::vector axes_int32; + for (size_t i = 0; i < axes.size(); ++i) { + axes_int32.push_back(axes[i]); + } + + std::vector decrease_axes_int32; + for (size_t i = 0; i < decrease_axes.size(); ++i) { + decrease_axes_int32.push_back(decrease_axes[i]); + } + + std::vector none_axes_int32; + for (size_t i = 0; i < none_axes.size(); ++i) { + none_axes_int32.push_back(none_axes[i]); + } + + int r = xpu::set_value_grad(dev_ctx.x_context(), + dy_data, + dx_data, + dv_data, + dy_shape, + dv_shape, + starts_vec_int32, + ends_vec_int32, + steps_vec_int32, + axes_int32, + decrease_axes_int32, + none_axes_int32); + PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value_grad"); +} + +} // namespace phi + +PD_REGISTER_KERNEL(set_value_grad, + XPU, + ALL_LAYOUT, + phi::SetValueGradKernel, + float, + phi::dtype::float16) {} diff --git a/paddle/phi/kernels/xpu/set_value_kernel.cc b/paddle/phi/kernels/xpu/set_value_kernel.cc new file mode 100644 index 0000000000000000000000000000000000000000..97ca0ea1b20fae860c687248162c1c73ce6e5112 --- /dev/null +++ b/paddle/phi/kernels/xpu/set_value_kernel.cc @@ -0,0 +1,165 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/set_value_kernel.h" + +#include "paddle/phi/backends/xpu/enforce_xpu.h" +#include "paddle/phi/backends/xpu/xpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +#include "paddle/phi/common/int_array.h" +#include "paddle/phi/common/scalar.h" +#include "paddle/phi/core/dense_tensor.h" +#include "paddle/phi/core/tensor_utils.h" +#include "paddle/phi/kernels/empty_kernel.h" +#include "paddle/phi/kernels/funcs/broadcast_function.h" +#include "paddle/phi/kernels/funcs/eigen/common.h" +#include "paddle/phi/kernels/funcs/eigen/eigen_function.h" +#include "paddle/phi/kernels/funcs/elementwise_functor.h" +#include "paddle/phi/kernels/funcs/slice_utils.h" + +namespace phi { + +template +void SetTensorValueKernel(const Context& dev_ctx, + const DenseTensor& x, + const DenseTensor& value, + const IntArray& starts, + const IntArray& ends, + const IntArray& steps, + const std::vector& axes, + const std::vector& decrease_axes, + const std::vector& none_axes, + DenseTensor* out) { + using XPUType = typename XPUTypeTrait::Type; + out->Resize(x.dims()); + dev_ctx.template Alloc(out); + + const XPUType* x_data = reinterpret_cast(x.data()); + const XPUType* v_data = reinterpret_cast(value.data()); + XPUType* y_data = reinterpret_cast(out->data()); + + std::vector starts_vec = starts.GetData(); + std::vector ends_vec = ends.GetData(); + std::vector steps_vec = steps.GetData(); + + std::vector starts_vec_int32; + for (size_t i = 0; i < starts_vec.size(); ++i) { + starts_vec_int32.push_back(starts_vec[i]); + } + + std::vector ends_vec_int32; + for (size_t i = 0; i < ends_vec.size(); ++i) { + ends_vec_int32.push_back(ends_vec[i]); + } + + std::vector steps_vec_int32; + for (size_t i = 0; i < steps_vec.size(); ++i) { + steps_vec_int32.push_back(steps_vec[i]); + } + + std::vector axes_int32; + for (size_t i = 0; i < axes.size(); ++i) { + axes_int32.push_back(axes[i]); + } + + std::vector decrease_axes_int32; + for (size_t i = 0; i < decrease_axes.size(); ++i) { + decrease_axes_int32.push_back(decrease_axes[i]); + } + + std::vector none_axes_int32; + for (size_t i = 0; i < none_axes.size(); ++i) { + none_axes_int32.push_back(none_axes[i]); + } + + auto x_dims = x.dims(); + std::vector x_shape; + for (int i = 0; i < x_dims.size(); ++i) { + x_shape.push_back(x_dims[i]); + } + + auto v_dims = value.dims(); + std::vector v_shape; + for (int i = 0; i < v_dims.size(); ++i) { + v_shape.push_back(v_dims[i]); + } + + int r = xpu::set_value(dev_ctx.x_context(), + x_data, + v_data, + y_data, + x_shape, + v_shape, + starts_vec_int32, + ends_vec_int32, + steps_vec_int32, + axes_int32, + decrease_axes_int32, + none_axes_int32); + PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value"); +} + +template +void SetValueKernel(const Context& dev_ctx, + const DenseTensor& x, + const IntArray& starts, + const IntArray& ends, + const IntArray& steps, + const std::vector& axes, + const std::vector& decrease_axes, + const std::vector& none_axes, + const std::vector& shape, + const std::vector& values, + DenseTensor* out) { + std::vector assgin_values; + assgin_values.reserve(values.size()); + for (const auto& val : values) { + assgin_values.push_back(val.to()); + } + DenseTensor value_tensor = Empty(dev_ctx, shape); + paddle::framework::TensorFromVector(assgin_values, dev_ctx, &value_tensor); + value_tensor.Resize(phi::make_ddim(shape)); + + SetTensorValueKernel(dev_ctx, + x, + value_tensor, + starts, + ends, + steps, + axes, + decrease_axes, + none_axes, + out); +} + +} // namespace phi + +PD_REGISTER_KERNEL(set_value, + XPU, + ALL_LAYOUT, + phi::SetValueKernel, + float, + phi::dtype::float16, + int, + int64_t) {} + +PD_REGISTER_KERNEL(set_value_with_tensor, + XPU, + ALL_LAYOUT, + phi::SetTensorValueKernel, + float, + phi::dtype::float16, + int, + int64_t) {} diff --git a/python/paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py new file mode 100644 index 0000000000000000000000000000000000000000..bf009c064eb85081fcada978ac71430b0241de28 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py @@ -0,0 +1,92 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Test set_value op in static mode + +import sys +import unittest + +import numpy as np + +sys.path.append("../") +from op_test_xpu import XPUOpTest +from xpu.get_test_cover_info import ( + XPUOpTestWrapper, + create_test_class, + get_xpu_op_support_types, +) + +import paddle +from paddle.fluid.framework import _test_eager_guard + + +class XPUTestSetValueOp(XPUOpTestWrapper): + def __init__(self): + self.op_name = 'set_value' + self.use_dynamic_create_class = False + + class TestSetValueOp(XPUOpTest): + def setUp(self): + paddle.enable_static() + self.__class__.op_type = "set_value" + self.place = paddle.XPUPlace(0) + self.shape = [2] + self.value = 6 + self.dtype = "float32" + self.__class__.dtype = self.dtype + self.data = np.ones(self.shape).astype(self.dtype) + self.program = paddle.static.Program() + + def _call_setitem(self, x): + x[0] = self.value + + def _get_answer(self): + self.data[0] = self.value + + class TestSetValueOp1(TestSetValueOp): + def _run_static(self): + paddle.enable_static() + with paddle.static.program_guard(self.program): + x = paddle.ones(shape=self.shape, dtype=self.dtype) + self._call_setitem(x) + + exe = paddle.static.Executor(paddle.XPUPlace(0)) + out = exe.run(self.program, fetch_list=[x]) + paddle.disable_static() + return out + + def func_test_api(self): + static_out = self._run_static() + self._get_answer() + + error_msg = ( + "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}" + ) + self.assertTrue( + (self.data == static_out).all(), + msg=error_msg.format("static", self.data, static_out), + ) + + def test_api(self): + with _test_eager_guard(): + self.func_test_api() + self.func_test_api() + + +support_types = get_xpu_op_support_types('set_value') +for stype in support_types: + create_test_class(globals(), XPUTestSetValueOp, stype) + +if __name__ == '__main__': + unittest.main()