提交 86fd6b63 编写于 作者: C caoying03

add gpu kernel by copying inputs/outputs between cpu and gpu.

上级 cca383cf
...@@ -38,7 +38,7 @@ const Tensor* GetTensorFromVar(const Variable* var) { ...@@ -38,7 +38,7 @@ const Tensor* GetTensorFromVar(const Variable* var) {
return &var->Get<LoDTensor>(); return &var->Get<LoDTensor>();
} }
PADDLE_ENFORCE(var->IsType<Tensor>(), PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor."); "The Input must be a LoDTensor or a Tensor.");
return &var->Get<Tensor>(); return &var->Get<Tensor>();
} }
...@@ -47,39 +47,39 @@ Tensor* GetTensorFromVar(Variable* var) { ...@@ -47,39 +47,39 @@ Tensor* GetTensorFromVar(Variable* var) {
return var->GetMutable<LoDTensor>(); return var->GetMutable<LoDTensor>();
} }
PADDLE_ENFORCE(var->IsType<Tensor>(), PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor."); "The Input must be a LoDTensor or a Tensor.");
return var->GetMutable<Tensor>(); return var->GetMutable<Tensor>();
} }
std::string OperatorBase::Input(const std::string& name) const { std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name); auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL, PADDLE_ENFORCE_LE(ins.size(), 1UL,
"Op %s input %s should contain only one variable", type_, "Operator %s's input %s should contain only one variable.",
name); type_, name);
return ins.empty() ? kEmptyVarName : ins[0]; return ins.empty() ? kEmptyVarName : ins[0];
} }
const std::vector<std::string>& OperatorBase::Inputs( const std::vector<std::string>& OperatorBase::Inputs(
const std::string& name) const { const std::string& name) const {
auto it = inputs_.find(name); auto it = inputs_.find(name);
PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_, PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
name); type_, name);
return it->second; return it->second;
} }
std::string OperatorBase::Output(const std::string& name) const { std::string OperatorBase::Output(const std::string& name) const {
auto& outs = Outputs(name); auto& outs = Outputs(name);
PADDLE_ENFORCE_LE(outs.size(), 1UL, PADDLE_ENFORCE_LE(outs.size(), 1UL,
"Op %s output %s should contain only one variable", type_, "Operator %s's output %s should contain only one variable.",
name); type_, name);
return outs.empty() ? kEmptyVarName : outs[0]; return outs.empty() ? kEmptyVarName : outs[0];
} }
const std::vector<std::string>& OperatorBase::Outputs( const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const { const std::string& name) const {
auto it = outputs_.find(name); auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s", PADDLE_ENFORCE(it != outputs_.end(),
type_, name); "Operator %s does not have an output called %s.", type_, name);
return it->second; return it->second;
} }
......
...@@ -108,9 +108,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) { ...@@ -108,9 +108,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (holder_ != nullptr) { if (holder_ != nullptr) {
holder_->set_type(type); holder_->set_type(type);
} }
PADDLE_ENFORCE_GT(numel(), 0, PADDLE_ENFORCE_GT(
"Tensor's numel must be larger than zero to call " numel(), 0,
"Tensor::mutable_data. Call Tensor::set_dim first."); "When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type); int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */ /* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || !(holder_->place() == place) || if (holder_ == nullptr || !(holder_->place() == place) ||
......
...@@ -204,8 +204,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { ...@@ -204,8 +204,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(emission_exps_dims[0], PADDLE_ENFORCE(emission_exps_dims[0],
"An empty mini-batch is not allowed."); "An empty mini-batch is not allowed.");
auto transition_exps_dims = auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
ctx->GetInputDim(framework::GradVarName("TransitionExps"));
PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL, PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
"The Input(TransitionExps) should be a 2-D tensor."); "The Input(TransitionExps) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
...@@ -240,7 +239,8 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { ...@@ -240,7 +239,8 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
// operator is determined by its input: graidents of LogLikelihood. // operator is determined by its input: graidents of LogLikelihood.
framework::DataType IndicateDataType( framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("LogLikelihood")->type()); return framework::ToDataType(
ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type());
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
linear_chain_crf_grad,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, double>);
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -47,36 +48,90 @@ template <typename Place, typename T> ...@@ -47,36 +48,90 @@ template <typename Place, typename T>
class LinearChainCRFOpKernel : public framework::OpKernel<T> { class LinearChainCRFOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* emission_weights = ctx.Input<LoDTensor>("Emission");
auto* transition_weights = ctx.Input<Tensor>("Transition");
auto* emission_exps = ctx.Output<LoDTensor>("EmissionExps");
emission_exps->mutable_data<T>(ctx.GetPlace());
auto* transition_exps = ctx.Output<Tensor>("TransitionExps");
transition_exps->mutable_data<T>(ctx.GetPlace());
auto* label = ctx.Input<LoDTensor>("Label");
auto in_lod = emission_weights->lod();
PADDLE_ENFORCE(in_lod.size(), "Input(Emission) is not a sequence.");
// TODO(caoying) The checks related to LoD information should be // TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored. // moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL, PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Emission")->NumLevels(), 1UL,
"The Input(Emission) should be a sequence."); "The Input(Emission) should be a sequence.");
PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL, PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Label")->NumLevels(), 1UL,
"The Input(Label) should be a sequence."); "The Input(Label) should be a sequence.");
auto in_lod = ctx.Input<LoDTensor>("Label")->lod();
PADDLE_ENFORCE(in_lod.size(), "Input(Label) must be a sequence.");
const size_t level = 0; const size_t level = 0;
const size_t seq_num = in_lod[level].size() - 1;
// These local variables hold the inputs and outputs, garanteeing them on
// CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
// class's data members once we can profile the whole training process.
LoDTensor* emission_weights = nullptr;
LoDTensor emission_weight_tensor;
Tensor* transition_weights = nullptr;
Tensor transition_weight_tensor;
LoDTensor* label = nullptr;
LoDTensor label_tensor;
Tensor* emission_exps = nullptr;
Tensor emission_exps_tensor;
Tensor* transition_exps = nullptr;
Tensor transition_exps_tensor;
Tensor* alpha = nullptr;
Tensor alpha_tensor;
Tensor* ll = nullptr;
Tensor ll_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
emission_weights = &emission_weight_tensor;
transition_weights = &transition_weight_tensor;
label = &label_tensor;
CopyInputsToCpuMemory(
ctx.device_context(), *ctx.Input<LoDTensor>("Emission"),
*ctx.Input<Tensor>("Transition"), *ctx.Input<LoDTensor>("Label"),
emission_weights, transition_weights, label);
emission_exps = &emission_exps_tensor;
emission_exps->Resize(emission_weights->dims());
transition_exps = &transition_exps_tensor;
transition_exps->Resize(transition_weights->dims());
alpha = &alpha_tensor;
alpha->Resize(ctx.Output<Tensor>("Alpha")->dims());
ll = &ll_tensor;
} else {
emission_weights =
const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Emission"));
transition_weights = const_cast<Tensor*>(ctx.Input<Tensor>("Transition"));
label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));
emission_exps = ctx.Output<Tensor>("EmissionExps");
transition_exps = ctx.Output<Tensor>("TransitionExps");
alpha = ctx.Output<Tensor>("Alpha");
ll = ctx.Output<Tensor>("LogLikelihood");
}
// Because the computation codes only runs on CPU, here the memory for all
// the outputs is FIXED to be allocated on the CPU memory.
emission_exps->mutable_data<T>(platform::CPUPlace());
transition_exps->mutable_data<T>(platform::CPUPlace());
alpha->mutable_data<T>(platform::CPUPlace());
// Resize the output tensor to its correct dimension.
ll->Resize({static_cast<int>(seq_num), 1});
ll->mutable_data<T>(platform::CPUPlace());
// Now, all the inputs and outputs should be on the CPU memory.
auto emission_dims = emission_weights->dims(); auto emission_dims = emission_weights->dims();
const size_t batch_size = emission_dims[0]; const size_t batch_size = emission_dims[0];
const size_t tag_num = emission_dims[1]; const size_t tag_num = emission_dims[1];
const size_t seq_num = in_lod[level].size() - 1;
Tensor emission_row_max; Tensor emission_row_max;
emission_row_max.mutable_data<T>( emission_row_max.mutable_data<T>(
framework::make_ddim({static_cast<int>(batch_size), 1}), framework::make_ddim({static_cast<int>(batch_size), 1}),
ctx.GetPlace()); platform::CPUPlace());
auto place = ctx.GetEigenDevice<Place>(); auto place = ctx.GetEigenDevice<platform::CPUPlace>();
auto x = EigenMatrix<T>::From(*emission_weights); auto x = EigenMatrix<T>::From(*emission_weights);
auto x_row_max = EigenMatrix<T>::From(emission_row_max); auto x_row_max = EigenMatrix<T>::From(emission_row_max);
x_row_max.device(place) = x_row_max.device(place) =
...@@ -91,12 +146,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> { ...@@ -91,12 +146,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
auto w_exps = EigenMatrix<T>::From(*transition_exps); auto w_exps = EigenMatrix<T>::From(*transition_exps);
w_exps.device(place) = w.exp(); w_exps.device(place) = w.exp();
auto* alpha = ctx.Output<LoDTensor>("Alpha"); T* log_likelihood = ll->data<T>();
alpha->mutable_data<T>(ctx.GetPlace());
auto* ll = ctx.Output<LoDTensor>("LogLikelihood");
// resize the output tensor to the correct dimension.
ll->Resize({static_cast<int>(seq_num), 1});
T* log_likelihood = ll->mutable_data<T>(ctx.GetPlace());
for (size_t i = 0; i < seq_num; ++i) { for (size_t i = 0; i < seq_num; ++i) {
int start_pos = static_cast<int>(in_lod[level][i]); int start_pos = static_cast<int>(in_lod[level][i]);
int end_pos = static_cast<int>(in_lod[level][i + 1]); int end_pos = static_cast<int>(in_lod[level][i + 1]);
...@@ -116,9 +166,61 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> { ...@@ -116,9 +166,61 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
one_seq, one_seq_row_max, one_seq_exps, *transition_weights, one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
*transition_exps, one_seq_label, &one_seq_alpha); *transition_exps, one_seq_label, &one_seq_alpha);
} }
if (platform::is_gpu_place(ctx.GetPlace())) {
CopyOutputsToGpuMemory(
ctx.device_context(), *emission_exps, *transition_exps, *alpha, *ll,
ctx.Output<Tensor>("EmissionExps"),
ctx.Output<Tensor>("TransitionExps"), ctx.Output<Tensor>("Alpha"),
ctx.Output<Tensor>("LogLikelihood"));
}
};
private:
void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
const LoDTensor& emission_weights_src,
const Tensor& transition_weights_src,
const LoDTensor& label_src,
LoDTensor* emission_weights_dst,
Tensor* transition_weights_dst,
LoDTensor* label_dst) const {
// Copy the inputs from GPU memory to CPU memory if this operators runs on
// GPU device.
auto copyLoDTensor = [](const platform::DeviceContext& ctx,
const LoDTensor& src, LoDTensor* dst) {
dst->mutable_data<T>(src.dims(), platform::CPUPlace());
dst->CopyFrom(src, platform::CPUPlace(), ctx);
};
copyLoDTensor(ctx, emission_weights_src, emission_weights_dst);
copyLoDTensor(ctx, label_src, label_dst);
transition_weights_dst->mutable_data<T>(transition_weights_src.dims(),
platform::CPUPlace());
transition_weights_dst->CopyFrom(transition_weights_src,
platform::CPUPlace(), ctx);
}
void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
const Tensor& emission_exps_src,
const Tensor& transition_exps_src,
const Tensor& alpha_src, const Tensor& ll_src,
Tensor* emission_exps_dst,
Tensor* transition_exps_dst, Tensor* alpha_dst,
Tensor* ll_dst) const {
// Copy the forward results from CPU memory to GPU memory if this
// operators runs on GPU device.
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
Tensor* dst) {
dst->mutable_data<T>(platform::GPUPlace());
dst->CopyFrom(src, platform::GPUPlace(), ctx);
};
copyTensor(ctx, emission_exps_src, emission_exps_dst);
copyTensor(ctx, transition_exps_src, transition_exps_dst);
copyTensor(ctx, alpha_src, alpha_dst);
copyTensor(ctx, ll_src, ll_dst);
}; };
protected:
T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max, T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
const Tensor& emission_exps, const Tensor& trans_weights, const Tensor& emission_exps, const Tensor& trans_weights,
const Tensor& trans_weight_exps, const Tensor& label, const Tensor& trans_weight_exps, const Tensor& label,
...@@ -183,35 +285,84 @@ template <typename Place, typename T> ...@@ -183,35 +285,84 @@ template <typename Place, typename T>
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> { class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* label = ctx.Input<LoDTensor>("Label"); const size_t level = 0; // currently, only support sequence.
auto* emission_exps = ctx.Input<LoDTensor>("EmissionExps"); auto lod = ctx.Input<LoDTensor>("Label")->lod();
auto* transition_exps = ctx.Input<Tensor>("TransitionExps"); PADDLE_ENFORCE(lod.size(), "Input(Label) must be a sequence.");
auto* alpha = ctx.Input<LoDTensor>("Alpha");
const T* ll_grad = // These local variables hold the inputs and outputs, garanteeing them on
ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>(); // CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
auto place = ctx.GetPlace(); // class's data members once we can profile the training process.
auto* emission_grad = Tensor* label = nullptr;
ctx.Output<Tensor>(framework::GradVarName("Emission")); Tensor label_tensor;
emission_grad->mutable_data<T>(place); Tensor* emission_exps = nullptr;
Tensor emission_exps_tensor;
auto* trans_grad = ctx.Output<Tensor>(framework::GradVarName("Transition")); Tensor* transition_exps = nullptr;
if (trans_grad) { Tensor transition_exps_tensor;
trans_grad->mutable_data<T>(place); Tensor* alpha = nullptr;
Tensor alpha_tensor;
Tensor ll_grad_tensor;
T* ll_grad = nullptr;
Tensor* emission_grad = nullptr;
Tensor emission_grad_tensor;
Tensor* transition_grad = nullptr;
Tensor transition_grad_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
label = &label_tensor;
emission_exps = &emission_exps_tensor;
transition_exps = &transition_exps_tensor;
alpha = &alpha_tensor;
CopyInputsToCpuMemory(
ctx.device_context(), *ctx.Input<LoDTensor>("Label"),
*ctx.Input<Tensor>("EmissionExps"),
*ctx.Input<Tensor>("TransitionExps"), *ctx.Input<Tensor>("Alpha"),
*ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")), label,
emission_exps, transition_exps, alpha, &ll_grad_tensor);
ll_grad = ll_grad_tensor.data<T>();
if (ctx.Output<Tensor>(framework::GradVarName("Emission"))) {
emission_grad = &emission_grad_tensor;
emission_grad->Resize(emission_exps->dims());
}
if (ctx.Output<Tensor>(framework::GradVarName("Transition"))) {
transition_grad = &transition_grad_tensor;
transition_grad->Resize(transition_exps->dims());
}
} else {
label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));
emission_exps = const_cast<Tensor*>(ctx.Input<Tensor>("EmissionExps"));
transition_exps =
const_cast<Tensor*>(ctx.Input<Tensor>("TransitionExps"));
alpha = const_cast<Tensor*>(ctx.Input<Tensor>("Alpha"));
ll_grad = const_cast<Tensor*>(
ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")))
->data<T>();
emission_grad = ctx.Output<Tensor>(framework::GradVarName("Emission"));
transition_grad =
ctx.Output<Tensor>(framework::GradVarName("Transition"));
}
PADDLE_ENFORCE(emission_grad, "Output(Emission@Grad) should not be null.");
emission_grad->mutable_data<T>(platform::CPUPlace());
math::SetConstant<platform::CPUPlace, T>()(ctx.device_context(),
emission_grad, 0.);
if (transition_grad) {
transition_grad->mutable_data<T>(platform::CPUPlace());
math::SetConstant<platform::CPUPlace, T>()(ctx.device_context(),
transition_grad, 0.);
} }
// Now, all the inputs and outputs should be on the CPU memory.
auto emission_dims = emission_exps->dims(); auto emission_dims = emission_exps->dims();
// Beta is the memo table used in dynamic programming to calculate the // Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it // backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at // captures the unnormalized probabilities of partial sequences starting
// position i. // at position i.
Tensor beta; Tensor beta;
beta.mutable_data<T>(emission_dims, place); beta.mutable_data<T>(emission_dims, platform::CPUPlace());
const size_t level = 0; // currently, only support sequence.
auto lod = label->lod();
PADDLE_ENFORCE(lod.size(), "Input(Label) is not a sequence.");
for (size_t i = 0; i < lod[level].size() - 1; ++i) { for (size_t i = 0; i < lod[level].size() - 1; ++i) {
int start_pos = static_cast<int>(lod[level][i]); int start_pos = static_cast<int>(lod[level][i]);
...@@ -228,11 +379,60 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> { ...@@ -228,11 +379,60 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
BackwardOneSequence(ctx.device_context(), ll_grad[i], BackwardOneSequence(ctx.device_context(), ll_grad[i],
one_seq_emission_exps, *transition_exps, one_seq_emission_exps, *transition_exps,
one_seq_alpha, one_seq_label, &one_seq_beta, one_seq_alpha, one_seq_label, &one_seq_beta,
trans_grad, &one_seq_emission_grad); transition_grad, &one_seq_emission_grad);
}
if (platform::is_gpu_place(ctx.GetPlace())) {
CopyOutputsToGpuMemory(
ctx.device_context(), emission_grad, transition_grad,
ctx.Output<Tensor>(framework::GradVarName("Emission")),
ctx.Output<Tensor>(framework::GradVarName("Transition")));
} }
}; };
protected: private:
void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
const LoDTensor& label_src,
const Tensor& emission_exps_src,
const Tensor& transition_exps_src,
const Tensor& alpha_src, const Tensor& ll_grad_src,
Tensor* label_dst, Tensor* emission_exps_dst,
Tensor* transition_exps_dst, Tensor* alpha_dst,
Tensor* ll_grad_dst) const {
// Copy the inputs from GPU memory to CPU memory when this operators runs on
// GPU device.
label_dst->mutable_data<T>(label_src.dims(), platform::CPUPlace());
label_dst->CopyFrom(label_src, platform::CPUPlace(), ctx);
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
Tensor* dst) {
dst->mutable_data<T>(src.dims(), platform::CPUPlace());
dst->CopyFrom(src, platform::CPUPlace(), ctx);
};
copyTensor(ctx, emission_exps_src, emission_exps_dst);
copyTensor(ctx, transition_exps_src, transition_exps_dst);
copyTensor(ctx, alpha_src, alpha_dst);
copyTensor(ctx, ll_grad_src, ll_grad_dst);
};
void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
const Tensor* emission_grad_src,
const Tensor* transition_grad_src,
Tensor* emission_grad_dst,
Tensor* transition_grad_dst) const {
// Copy the backward results from CPU memory to GPU
// memory if this operators runs on GPU device.
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor* src,
Tensor* dst) {
if (src && dst) {
dst->mutable_data<T>(platform::GPUPlace());
dst->CopyFrom(*src, platform::GPUPlace(), ctx);
}
};
copyTensor(ctx, emission_grad_src, emission_grad_dst);
copyTensor(ctx, transition_grad_src, transition_grad_dst);
};
void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad, void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad,
const Tensor& emission_exps, const Tensor& emission_exps,
const Tensor& transition_exps, const Tensor& alpha, const Tensor& transition_exps, const Tensor& alpha,
...@@ -255,7 +455,6 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> { ...@@ -255,7 +455,6 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i]; beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
} }
NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num); NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) { for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
for (size_t i = 0; i < tag_num; ++i) { for (size_t i = 0; i < tag_num; ++i) {
T sum = 0.; T sum = 0.;
...@@ -270,10 +469,11 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> { ...@@ -270,10 +469,11 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
NormalizeL1<T>(beta_value + k * tag_num, tag_num); NormalizeL1<T>(beta_value + k * tag_num, tag_num);
} }
auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
auto alpha_mat = EigenMatrix<T>::From(alpha); auto alpha_mat = EigenMatrix<T>::From(alpha);
auto beta_mat = EigenMatrix<T>::From(*beta); auto beta_mat = EigenMatrix<T>::From(*beta);
auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
auto* place = ctx.GetEigenDevice<Place>(); auto* place = ctx.GetEigenDevice<platform::CPUPlace>();
auto prob = alpha_mat * beta_mat; auto prob = alpha_mat * beta_mat;
auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1)) auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
.reshape(Eigen::DSizes<int, 2>(seq_length, 1)) .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
...@@ -296,7 +496,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> { ...@@ -296,7 +496,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
// TODO(caoying): Fix this to avoid using this local variable. // TODO(caoying): Fix this to avoid using this local variable.
Tensor tmp; Tensor tmp;
tmp.mutable_data<T>(beta->dims(), ctx.GetPlace()); tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
auto tmp_mat = EigenMatrix<T>::From(tmp); auto tmp_mat = EigenMatrix<T>::From(tmp);
auto prob = beta_mat * x_exps_mat; auto prob = beta_mat * x_exps_mat;
auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1)) auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册