Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8610ba1c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8610ba1c
编写于
6月 05, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"remove get config proto"
上级
5b8a0c5d
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
150 addition
and
193 deletion
+150
-193
paddle/optimizer/Tensor.h
paddle/optimizer/Tensor.h
+12
-4
paddle/optimizer/adadelta_optimizer.cc
paddle/optimizer/adadelta_optimizer.cc
+8
-14
paddle/optimizer/adadelta_optimizer.h
paddle/optimizer/adadelta_optimizer.h
+11
-12
paddle/optimizer/adagrad_optimizer.cc
paddle/optimizer/adagrad_optimizer.cc
+8
-13
paddle/optimizer/adagrad_optimizer.h
paddle/optimizer/adagrad_optimizer.h
+6
-10
paddle/optimizer/adam_optimizer.cc
paddle/optimizer/adam_optimizer.cc
+6
-11
paddle/optimizer/adam_optimizer.h
paddle/optimizer/adam_optimizer.h
+7
-11
paddle/optimizer/lr_policy.h
paddle/optimizer/lr_policy.h
+15
-0
paddle/optimizer/optimizer.cc
paddle/optimizer/optimizer.cc
+11
-12
paddle/optimizer/parameter_optimizer.cc
paddle/optimizer/parameter_optimizer.cc
+44
-62
paddle/optimizer/parameter_optimizer.h
paddle/optimizer/parameter_optimizer.h
+4
-12
paddle/optimizer/sgd_optimizer.h
paddle/optimizer/sgd_optimizer.h
+13
-22
paddle/optimizer/sgd_optmizer.cc
paddle/optimizer/sgd_optmizer.cc
+5
-10
未找到文件。
paddle/optimizer/Tensor.h
浏览文件 @
8610ba1c
...
...
@@ -5,7 +5,6 @@
*/
#include <string.h>
#include "optimizer.h"
#include "paddle/math/BaseMatrix.h"
namespace
paddle
{
...
...
@@ -15,18 +14,27 @@ template <class T>
using
TensorBase
=
BaseMatrixT
<
T
>
;
template
<
class
T
>
class
Tensor
:
public
TensorBase
<
T
>
{
class
Tensor
T
:
public
TensorBase
<
T
>
{
public:
Tensor
(
T
*
data
,
int
size
)
:
TensorBase
<
T
>
(
1
,
size
,
0
,
data
,
false
,
false
)
{}
TensorT
(
T
*
data
,
int
size
)
:
TensorBase
<
T
>
(
1
,
size
,
0
,
data
,
false
,
false
)
{}
TensorT
(
const
TensorT
&
t
)
:
TensorBase
<
T
>
(
1
,
t
.
size
(),
0
,
t
.
get_buffer
(),
false
,
false
)
{}
TensorT
&
operator
=
(
const
TensorT
&
t
)
{
this
->
size_
=
t
.
size
();
this
->
data_
=
t
.
get_buffer
();
}
T
*
get_buffer
()
{
return
this
->
data_
;
}
T
&
operator
[](
const
int
idx
)
{
CHECK
(
idx
>=
0
&&
idx
<
this
->
width_
)
<<
"
out of index range"
;
CHECK
(
idx
>=
0
&&
idx
<
this
->
width_
)
<<
"out of index range"
;
return
this
->
data_
[
idx
];
}
// TODO: replace with tensorshape
size_t
size
()
const
{
return
this
->
width_
;
}
};
// TODO(zhihong): design problem of dynamic datatype, need to fix
typedef
TensorT
<
real
>
Tensor
;
}
// namespace optimizer
}
// namespace paddle
...
...
paddle/optimizer/adadelta_optimizer.cc
浏览文件 @
8610ba1c
...
...
@@ -4,19 +4,17 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
void
AdadeltaOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>*
p
)
{
void
AdadeltaOptimizer
::
set_weight
(
Tensor
*
p
)
{
size_t
size
=
p
->
size
();
T
*
gptr
=
new
T
[
size
];
accum_gradient
=
Tensor
<
T
>
(
gptr
,
size
);
T
*
dptr
=
new
T
[
size
];
accum_delta
=
Tensor
<
T
>
(
dptr
,
size
);
T
*
dptr_current
=
new
T
[
size
];
update_delta
=
Tensor
<
T
>
(
dptr_current
,
size
);
real
*
gptr
=
new
real
[
size
];
accum_gradient
=
Tensor
(
gptr
,
size
);
real
*
dptr
=
new
real
[
size
];
accum_delta
=
Tensor
(
dptr
,
size
);
real
*
dptr_current
=
new
real
[
size
];
update_delta
=
Tensor
(
dptr_current
,
size
);
}
template
<
class
T
>
void
AdadeltaOptimizer
<
T
>::
update
(
const
Tensor
<
T
>&
gradient
)
{
void
AdadeltaOptimizer
::
update
(
const
Tensor
&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
...
...
@@ -33,9 +31,5 @@ void AdadeltaOptimizer<T>::update(const Tensor<T>& gradient) {
learning_rate
*
update_delta
[
i
]
+
learning_rate
*
decay
*
parameter_
[
i
];
}
}
template
class
AdadeltaOptimizer
<
float
>;
template
class
AdadeltaOptimizer
<
double
>;
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adadelta_optimizer.h
浏览文件 @
8610ba1c
...
...
@@ -6,28 +6,27 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
class
AdadeltaOptimizer
:
public
ParameterOptimizer
<
T
>
{
class
AdadeltaOptimizer
:
public
ParameterOptimizer
{
public:
using
ParameterOptimizer
<
T
>
::
parameter_
;
using
ParameterOptimizer
<
T
>
::
num_sample_passed
;
using
ParameterOptimizer
<
T
>
::
lr_policy
;
using
ParameterOptimizer
::
parameter_
;
using
ParameterOptimizer
::
num_sample_passed
;
using
ParameterOptimizer
::
lr_policy
;
AdadeltaOptimizer
(
double
rho
,
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
rho
(
rho
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
:
ParameterOptimizer
(
lr
),
rho
(
rho
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
~
AdadeltaOptimizer
()
{
if
(
accum_gradient
)
delete
accum_gradient
;
if
(
accum_delta
)
delete
accum_delta
;
if
(
update_delta
)
delete
update_delta
;
}
void
update
(
const
Tensor
<
T
>
&
gradient
);
void
set_weight
(
const
Tensor
<
T
>
*
p
);
T
*
get_weight
()
const
;
void
update
(
const
Tensor
&
gradient
);
void
set_weight
(
Tensor
*
p
);
real
*
get_weight
()
const
;
private:
Tensor
<
T
>
*
accum_gradient
;
Tensor
<
T
>
*
accum_delta
;
Tensor
<
T
>
*
update_delta
;
Tensor
*
accum_gradient
;
Tensor
*
accum_delta
;
Tensor
*
update_delta
;
double
rho
;
double
epsilon
;
...
...
paddle/optimizer/adagrad_optimizer.cc
浏览文件 @
8610ba1c
...
...
@@ -2,21 +2,18 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
template
<
class
T
>
void
AdagradOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>*
p
)
{
void
AdagradOptimizer
::
set_weight
(
Tensor
*
p
)
{
size_t
size
=
p
->
width
();
T
*
gptr
=
new
T
[
size
];
accum_gradient
=
Tensor
<
T
>
(
gptr
,
size
);
T
*
dptr
=
new
T
[
size
];
accum_delta
=
Tensor
<
T
>
(
dtpr
,
size
);
T
*
dptr_current
=
new
T
[
size
];
update_delta
=
Tensor
<
T
>
(
dptr_current
,
size
);
real
*
gptr
=
new
real
[
size
];
accum_gradient
=
Tensor
(
gptr
,
size
);
real
*
dptr
=
new
real
[
size
];
accum_delta
=
Tensor
(
dtpr
,
size
);
real
*
dptr_current
=
new
real
[
size
];
update_delta
=
Tensor
(
dptr_current
,
size
);
}
template
<
class
T
>
void
AdagradOptimizer
<
T
>::
update
(
const
Tensor
<
T
>&
gradient
)
{
void
AdagradOptimizer
::
update
(
const
Tensor
&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
();
for
(
size_t
i
=
0
;
i
<
parameter_
.
size
();
++
i
)
{
...
...
@@ -27,7 +24,5 @@ void AdagradOptimizer<T>::update(const Tensor<T>& gradient) {
}
}
template
class
AdagradOptimizer
<
float
>;
template
class
AdagradOptimizer
<
double
>;
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adagrad_optimizer.h
浏览文件 @
8610ba1c
...
...
@@ -6,23 +6,19 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
class
AdagradOptimizer
:
public
ParameterOptimizer
<
T
>
{
class
AdagradOptimizer
:
public
ParameterOptimizer
{
public:
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
AdagradOptimizer
(
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
:
ParameterOptimizer
(
lr
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
~
AdagradOptimizer
()
{
if
(
accum_gradient
)
delete
accum_gradient
;
}
void
update
(
const
Tensor
<
T
>
&
gradient
);
void
set_weight
(
const
Tensor
<
T
>
*
p
);
T
*
get_weight
()
const
;
void
update
(
const
Tensor
&
gradient
);
void
set_weight
(
Tensor
*
p
);
real
*
get_weight
()
const
;
private:
Tensor
<
T
>
*
accum_gradient
;
Tensor
*
accum_gradient
;
double
epsilon
;
double
decay
;
};
...
...
paddle/optimizer/adam_optimizer.cc
浏览文件 @
8610ba1c
...
...
@@ -3,17 +3,15 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
void
AdamOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>
*
p
)
{
void
AdamOptimizer
::
set_weight
(
Tensor
*
p
)
{
size_t
size
=
p
->
width
();
T
*
mptr
=
new
T
[
size
];
momentums_
=
Tensor
<
T
>
(
mptr
,
size
);
T
*
vptr
=
new
T
[
size
];
velocitys_
=
Tensor
<
T
>
(
vtpr
,
size
);
real
*
mptr
=
new
real
[
size
];
momentums_
=
Tensor
(
mptr
,
size
);
real
*
vptr
=
new
real
[
size
];
velocitys_
=
Tensor
(
vtpr
,
size
);
}
template
<
class
T
>
void
AdamOptimizer
<
T
>::
update
(
const
Tensor
<
T
>
&
gradient
)
{
void
AdamOptimizer
::
update
(
const
Tensor
&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
double
coef1
=
1.0
-
std
::
pow
(
beta_1
,
num_sample_passed
);
...
...
@@ -28,8 +26,5 @@ void AdamOptimizer<T>::update(const Tensor<T> &gradient) {
decay
*
parameter_
[
i
]);
}
}
template
class
AdamOptimizer
<
float
>;
template
class
AdamOptimizer
<
double
>;
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/adam_optimizer.h
浏览文件 @
8610ba1c
...
...
@@ -6,15 +6,11 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
class
AdamOptimizer
:
public
ParameterOptimizer
<
T
>
{
class
AdamOptimizer
:
public
ParameterOptimizer
{
public:
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
AdamOptimizer
(
double
beta_1
,
double
beta_2
,
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
:
ParameterOptimizer
(
lr
),
beta_1
(
beta_1
),
beta_2
(
beta_2
),
epsilon
(
epsilon
),
...
...
@@ -23,13 +19,13 @@ public:
if
(
momentums_
)
delete
momentums_
;
if
(
velocitys_
)
delete
velocitys_
;
}
void
update
(
const
Tensor
<
T
>
&
gradient
);
void
set_weight
(
const
Tensor
<
T
>
*
p
);
T
*
get_weight
()
const
;
void
update
(
const
Tensor
&
gradient
);
void
set_weight
(
Tensor
*
p
);
real
*
get_weight
()
const
;
private:
Tensor
<
T
>
*
momentums_
;
Tensor
<
T
>
*
velocitys_
;
Tensor
*
momentums_
;
Tensor
*
velocitys_
;
double
beta_1
;
double
beta_2
;
double
epsilon
;
...
...
paddle/optimizer/lr_policy.h
浏览文件 @
8610ba1c
#ifndef PADDLE_OPTIMIZER_LR_POLICY_H_
#define PADDLE_OPTIMIZER_LR_POLICY_H_
#include <algorithm>
#include "OptimizerConfig.pb.h"
namespace
paddle
{
...
...
@@ -19,11 +20,25 @@ protected:
// constant learning rate policy
class
ConstLr
final
:
public
BaseLr
{
public:
ConstLr
(
double
lr
)
:
BaseLr
(
lr
){};
double
get_learning_rate
(
const
uint64_t
num_sample_passed
)
{
return
learning_rate
;
}
};
class
LinearLr
final
:
public
BaseLr
{
public:
LinearLr
(
double
lr
,
double
lr_decay_a
,
double
lr_decay_b
)
:
BaseLr
(
lr
),
lr_decay_a
(
lr_decay_a
),
lr_decay_b
(
lr_decay_b
)
{}
double
get_learning_rate
(
const
uint64_t
num_sample_passed
)
{
return
std
::
max
(
learning_rate
-
lr_decay_a
*
num_sample_passed
,
lr_decay_b
);
}
private:
double
lr_decay_a
;
double
lr_decay_b
;
};
}
// namespace optimizer
}
// namespace paddle
...
...
paddle/optimizer/optimizer.cc
浏览文件 @
8610ba1c
...
...
@@ -2,8 +2,9 @@
#include <string>
#include "parameter_optimizer.h"
using
namespace
paddle
::
optimizer
;
template
<
paddle_element_type
T
>
template
<
paddle_element_type
VALUE
>
struct
EnumToType
{};
template
<
class
T
>
...
...
@@ -26,17 +27,16 @@ MATCH_ENUM_TYPE(int64_t, PADDLE_ELEMENT_TYPE_INT64);
MATCH_ENUM_TYPE
(
uint64_t
,
PADDLE_ELEMENT_TYPE_UINT64
);
MATCH_ENUM_TYPE
(
float
,
PADDLE_ELEMENT_TYPE_FLOAT32
);
MATCH_ENUM_TYPE
(
double
,
PADDLE_ELEMENT_TYPE_FLOAT64
);
struct
paddle_optimizer
{
/*! \brief optmizer in C++ side */
paddle
::
optimizer
::
ParameterOptimizerBase
*
impl
;
struct
paddle_optimizer
{
paddle
::
optimizer
::
ParameterOptimizer
*
impl
;
};
paddle_optimizer
*
paddle_create_optimizer
(
const
unsigned
char
*
config_proto
,
int
config_proto_len
)
{
paddle_optimizer
*
optimizer
;
paddle_optimizer
*
optimizer
=
new
paddle_optimizer
;
std
::
string
config
(
config_proto
,
config_proto
+
config_proto_len
);
optimizer
->
impl
->
create
(
config_proto
);
optimizer
->
impl
=
ParameterOptimizer
::
create
(
config
);
return
optimizer
;
}
...
...
@@ -49,9 +49,9 @@ int paddle_update_parameter(paddle_optimizer* o,
const
paddle_element_type
data_type
,
const
void
*
grad_buffer
,
int
num_bytes
)
{
auto
type
=
EnumToType
<
data_type
>::
Type
;
paddle
::
Tensor
<
type
>
gradient
(
reinterpret_cast
<
type
*>
(
grad_buffer
),
num_bytes
);
// TOOD(zhihong): datatype not work. need to add the runtime datatype
auto
grad
=
reinterpret_cast
<
const
real
*>
(
grad_buffer
);
Tensor
gradient
(
const_cast
<
real
*>
(
grad
),
num_bytes
);
o
->
impl
->
update
(
gradient
);
return
PADDLE_SUCCESS
;
}
...
...
@@ -60,9 +60,8 @@ int paddle_optimizer_set_weights(paddle_optimizer* o,
const
paddle_element_type
data_type
,
void
*
param_buffer
,
int
num_bytes
)
{
auto
type
=
EnumToType
<
data_type
>::
Type
;
paddle
::
Tensor
<
type
>*
param
=
new
paddle
::
Tensor
<
type
>
(
reinterpret_cast
<
type
*>
(
param_buffer
),
num_bytes
);
// TOOD(zhihong): datatype not work. need to add the runtime datatype
Tensor
*
param
=
new
Tensor
(
reinterpret_cast
<
real
*>
(
param_buffer
),
num_bytes
);
o
->
impl
->
set_weight
(
param
);
return
PADDLE_SUCCESS
;
}
...
...
paddle/optimizer/parameter_optimizer.cc
浏览文件 @
8610ba1c
...
...
@@ -10,78 +10,60 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
ParameterOptimizer
<
T
>
*
ParameterOptimizer
<
T
>::
create
(
ParameterOptimizer
*
ParameterOptimizer
::
create
(
const
::
std
::
string
&
config_proto
)
{
paddle
::
OptimizerConfig
config
;
CHECK
(
config
.
ParseFromString
(
config_proto
)
==
0
)
<<
"error : optimizer config"
;
CHECK
(
config_valid
(
config
)
==
0
)
<<
"error : invalid optimizer config "
;
BaseLr
*
lr
=
nullptr
;
switch
(
config
.
lr_policy
())
{
case
"ConstLr"
:
lr
=
new
ConstLr
(
config
.
lr_config
().
learning_rate
());
break
;
}
ParameterOptimizer
<
T
>
*
opt
=
nullptr
;
switch
(
config
.
optimizer_name
())
{
case
"SGD"
:
opt
=
new
SGDOptimizer
<
T
>
(
config
.
sgd
().
momentum
(),
config
.
sgd
().
decay
(),
config
.
sgd
().
nesterov
(),
lr
);
break
;
case
"Adagrad"
:
opt
=
new
AdagradOptimizer
<
T
>
(
auto
select_lr_policy
=
[
=
](
const
OptimizerConfig
&
config
)
->
BaseLr
*
{
std
::
string
s
(
config
.
lr_policy
());
if
(
s
==
"ConstLr"
)
return
new
ConstLr
(
config
.
lr_config
().
learning_rate
());
if
(
s
==
"LinearLr"
)
return
new
LinearLr
(
config
.
lr_config
().
learning_rate
(),
config
.
lr_config
().
lr_decay_a
(),
config
.
lr_config
().
lr_decay_b
());
// default
return
new
ConstLr
(
config
.
lr_config
().
learning_rate
());
};
BaseLr
*
lr
=
select_lr_policy
(
config
);
auto
select_optimizer
=
[
=
](
const
OptimizerConfig
&
config
)
->
ParameterOptimizer
*
{
std
::
string
s
(
config
.
optimizer_name
());
if
(
s
==
"SGD"
)
{
return
new
SGDOptimizer
(
config
.
sgd
().
momentum
(),
config
.
sgd
().
decay
(),
config
.
sgd
().
nesterov
(),
lr
);
}
if
(
s
==
"Adadelta"
)
{
return
new
AdagradOptimizer
(
config
.
adagrad
().
epsilon
(),
config
.
adagrad
().
decay
(),
lr
);
break
;
case
"Adadelta"
:
opt
=
new
AdadeltaOptimizer
<
T
>
(
config
.
adadelta
().
rho
(),
config
.
adadelta
().
epsilon
(),
config
.
adadelta
().
decay
(),
lr
);
break
;
case
"Adam"
:
opt
=
new
AdamOptimizer
<
T
>
(
config
.
adam
().
beta_1
(),
config
.
adam
().
beta_2
(),
config
.
adam
().
epsilon
(),
config
.
adam
().
decay
(),
lr
);
break
;
}
return
opt
;
}
template
<
class
T
>
T
*
ParameterOptimizer
<
T
>::
get_weight
()
const
{
return
parameter
.
get
().
get_buffer
();
}
template
<
class
T
>
char
*
ParameterOptimizer
<
T
>::
get_config_proto
()
const
{
// set config dynamic value for save checkpoint
config_
.
lr_policy
().
set_learning_rate
(
lr_policy
->
get_learning_rate
(
num_sample_passed
));
config_
.
set_num_sample_passed
(
num_sample_passed
);
config_
.
set_iterations
(
iterations
);
return
config_
.
SerializeAsString
().
c_str
();
}
template
<
class
T
>
void
ParameterOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>
*
p
)
{
parameter_
=
p
;
}
if
(
s
==
"Adagrad"
)
{
return
new
AdagradOptimizer
(
config
.
adagrad
().
epsilon
(),
config
.
adagrad
().
decay
(),
lr
);
}
if
(
s
==
"Adam"
)
{
return
new
AdadeltaOptimizer
(
config
.
adadelta
().
rho
(),
config
.
adadelta
().
epsilon
(),
config
.
adadelta
().
decay
(),
lr
);
}
// default
return
new
SGDOptimizer
(
config
.
sgd
().
momentum
(),
config
.
sgd
().
decay
(),
config
.
sgd
().
nesterov
(),
lr
);
};
return
select_optimizer
(
config
);
}
template
<
class
T
>
bool
ParameterOptimizer
<
T
>::
config_valid
(
const
::
std
::
string
&
config
)
const
{
// TODO(zhihong) : add more value checker, failed ASAP
return
true
;
real
*
ParameterOptimizer
::
get_weight
()
const
{
return
parameter_
->
get_buffer
();
}
template
class
ParameterOptimzier
<
float
>;
template
class
ParameterOptimzier
<
double
>;
void
ParameterOptimizer
::
set_weight
(
Tensor
*
p
)
{
parameter_
=
p
;
}
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/parameter_optimizer.h
浏览文件 @
8610ba1c
...
...
@@ -11,13 +11,6 @@
namespace
paddle
{
namespace
optimizer
{
class
ParameterOptimizerBase
{
private:
ParameterOptimizerBase
(
const
ParameterOptimizerBase
&
)
=
delete
;
ParameterOptimizerBase
&
operator
=
(
const
ParameterOptimizerBase
&
)
=
delete
;
};
template
<
class
T
>
class
ParameterOptimizer
{
public:
/**
...
...
@@ -31,14 +24,13 @@ public:
virtual
~
ParameterOptimizer
()
{
delete
parameter_
;
};
static
ParameterOptimizer
*
create
(
const
::
std
::
string
&
config_proto
);
virtual
void
update
(
const
Tensor
<
T
>
&
gradient
)
=
0
;
virtual
T
*
get_weight
()
const
;
virtual
void
set_weight
(
const
Tensor
<
T
>
*
parameter
);
virtual
void
update
(
const
Tensor
&
gradient
)
=
0
;
virtual
real
*
get_weight
()
const
;
virtual
void
set_weight
(
Tensor
*
parameter
);
public:
bool
config_valid
(
::
std
::
string
&
config
)
const
;
OptimizerConfig
config_
;
Tensor
<
T
>
*
parameter_
;
Tensor
*
parameter_
;
// learning rate policy
BaseLr
*
lr_policy
;
...
...
paddle/optimizer/sgd_optimizer.h
浏览文件 @
8610ba1c
...
...
@@ -6,31 +6,22 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
class
SGDOptimizer
:
public
ParameterOptimizer
<
T
>
{
class
SGDOptimizer
:
public
ParameterOptimizer
{
public:
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
SGDOptimizer
(
double
m
,
double
d
,
bool
n
,
double
learning_rate
,
uint64_t
num_sample_passed
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
momentum
(
m
),
decay
(
d
),
nesterov
(
n
)
{}
virtual
~
SGDOptimizer
()
{
// clear memory by Tensor library
delete
momentums_
;
}
void
update
(
const
Tensor
<
T
>&
gradient
);
void
set_weight
(
const
Tensor
<
T
>*
p
);
T
*
get_weight
()
const
;
using
ParameterOptimizer
::
parameter_
;
using
ParameterOptimizer
::
num_sample_passed
;
using
ParameterOptimizer
::
lr_policy
;
SGDOptimizer
(
double
m
,
double
d
,
bool
n
,
BaseLr
*
lr
)
:
ParameterOptimizer
(
lr
),
momentum
(
m
),
decay
(
d
),
nesterov
(
n
)
{}
virtual
~
SGDOptimizer
()
{
delete
momentums_
;
}
void
update
(
const
Tensor
&
gradient
);
void
set_weight
(
Tensor
*
p
);
real
*
get_weight
()
const
;
private:
Tensor
<
T
>
*
momentums_
;
Tensor
*
momentums_
;
double
momentum
;
double
decay
;
bool
nesterov
;
...
...
paddle/optimizer/sgd_optmizer.cc
浏览文件 @
8610ba1c
...
...
@@ -3,23 +3,21 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
void
SGDOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>
*
p
)
{
void
SGDOptimizer
::
set_weight
(
Tensor
*
p
)
{
// ParameterOptimizer::set_weight(p);
size_t
size
=
p
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
if
(
momentum
!=
0.0
)
{
T
*
ptr
=
new
T
[
size
];
momentums_
=
Tensor
<
T
>
(
ptr
,
size
);
real
*
ptr
=
new
real
[
size
];
momentums_
=
new
Tensor
(
ptr
,
size
);
}
}
template
<
class
T
>
void
SGDOptimizer
<
T
>::
update
(
const
Tensor
<
T
>
&
gradient
)
{
void
SGDOptimizer
::
update
(
const
Tensor
&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
double
velocity
=
0.0
;
Tensor
<
T
>
&
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
if
(
momentum
==
0.0
)
{
velocity
=
-
learning_rate
*
gradient
[
i
]
-
learning_rate
*
decay
*
parameter_
[
i
];
...
...
@@ -36,8 +34,5 @@ void SGDOptimizer<T>::update(const Tensor<T> &gradient) {
}
}
template
class
SGDOptimizer
<
float
>;
template
class
SGDOptimizer
<
double
>;
}
// namespace optimizer
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录