Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5b8a0c5d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5b8a0c5d
编写于
6月 05, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"optimizer remove init create with proto"
上级
3158efe9
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
130 addition
and
112 deletion
+130
-112
paddle/optimizer/CMakeLists.txt
paddle/optimizer/CMakeLists.txt
+6
-6
paddle/optimizer/Tensor.h
paddle/optimizer/Tensor.h
+7
-2
paddle/optimizer/adadelta_optimizer.cc
paddle/optimizer/adadelta_optimizer.cc
+6
-12
paddle/optimizer/adadelta_optimizer.h
paddle/optimizer/adadelta_optimizer.h
+6
-1
paddle/optimizer/adagrad_optimizer.cc
paddle/optimizer/adagrad_optimizer.cc
+0
-5
paddle/optimizer/adagrad_optimizer.h
paddle/optimizer/adagrad_optimizer.h
+5
-1
paddle/optimizer/adam_optimizer.cc
paddle/optimizer/adam_optimizer.cc
+10
-13
paddle/optimizer/adam_optimizer.h
paddle/optimizer/adam_optimizer.h
+14
-2
paddle/optimizer/lr_policy.h
paddle/optimizer/lr_policy.h
+4
-5
paddle/optimizer/optimizer.cc
paddle/optimizer/optimizer.cc
+12
-14
paddle/optimizer/optimizer.h
paddle/optimizer/optimizer.h
+2
-2
paddle/optimizer/parameter_optimizer.cc
paddle/optimizer/parameter_optimizer.cc
+29
-13
paddle/optimizer/parameter_optimizer.h
paddle/optimizer/parameter_optimizer.h
+12
-12
paddle/optimizer/regularizer.cc
paddle/optimizer/regularizer.cc
+2
-0
paddle/optimizer/sgd_optimizer.h
paddle/optimizer/sgd_optimizer.h
+12
-3
paddle/optimizer/sgd_optmizer.cc
paddle/optimizer/sgd_optmizer.cc
+2
-19
proto/OptimizerConfig.proto
proto/OptimizerConfig.proto
+1
-2
未找到文件。
paddle/optimizer/CMakeLists.txt
浏览文件 @
5b8a0c5d
include_directories
(
${
CMAKE_CURRENT_BINARY_DIR
}
)
set
(
OPITMIZER_SRCS
adadelta_optimizer.cc
adagrad_optimizer.cc
adam_optimizer.cc
#
adadelta_optimizer.cc
#
adagrad_optimizer.cc
#
adam_optimizer.cc
optimizer.cc
parameter_optimizer.cc
sgd_optmizer.cc
...
...
@@ -11,9 +11,9 @@ set(OPITMIZER_SRCS
)
set
(
OPITMIZER_Headers
adadelta_optimizer.h
adagrad_optimizer.h
adam_optimizer.h
#
adadelta_optimizer.h
#
adagrad_optimizer.h
#
adam_optimizer.h
lr_policy.h
optimizer.h
parameter_optimizer.h
...
...
paddle/optimizer/Tensor.h
浏览文件 @
5b8a0c5d
...
...
@@ -5,6 +5,7 @@
*/
#include <string.h>
#include "optimizer.h"
#include "paddle/math/BaseMatrix.h"
namespace
paddle
{
...
...
@@ -16,10 +17,14 @@ using TensorBase = BaseMatrixT<T>;
template
<
class
T
>
class
Tensor
:
public
TensorBase
<
T
>
{
public:
Tensor
(
T
*
data
,
int
size
)
:
TensorBase
<
T
>
(
size
,
1
,
0
,
data
,
false
,
false
)
{}
Tensor
(
T
*
data
,
int
size
)
:
TensorBase
<
T
>
(
1
,
size
,
0
,
data
,
false
,
false
)
{}
T
*
get_buffer
()
{
return
this
->
data_
;
}
T
&
operator
[](
const
int
idx
)
{
CHECK
(
idx
>=
0
&&
idx
<
this
->
width_
)
<<
" out of index range"
;
return
this
->
data_
[
idx
];
}
// TODO: replace with tensorshape
size_t
width
()
{
return
this
->
width_
;
}
size_t
size
()
const
{
return
this
->
width_
;
}
};
}
// namespace optimizer
...
...
paddle/optimizer/adadelta_optimizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -3,21 +3,14 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
AdadeltaOptimizer
<
T
>::
AdadeltaOptimizer
(
const
::
paddle
::
OptimizerConfig
&
config
)
:
ParameterOptimizer
<
T
>
(
config
)
{
rho
=
config
.
adadelta
().
rho
();
epsilon
=
config
.
adadelta
().
epsilon
();
decay
=
config
.
adadelta
().
decay
();
}
template
<
class
T
>
void
AdadeltaOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>*
p
)
{
size_t
size
=
p
->
width
();
size_t
size
=
p
->
size
();
T
*
gptr
=
new
T
[
size
];
accum_gradient
=
Tensor
<
T
>
(
gptr
,
size
);
T
*
dptr
=
new
T
[
size
];
accum_delta
=
Tensor
<
T
>
(
d
tp
r
,
size
);
accum_delta
=
Tensor
<
T
>
(
d
pt
r
,
size
);
T
*
dptr_current
=
new
T
[
size
];
update_delta
=
Tensor
<
T
>
(
dptr_current
,
size
);
}
...
...
@@ -25,8 +18,8 @@ void AdadeltaOptimizer<T>::set_weight(const Tensor<T>* p) {
template
<
class
T
>
void
AdadeltaOptimizer
<
T
>::
update
(
const
Tensor
<
T
>&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
();
for
(
size_t
i
=
0
;
i
<
parameter_
.
size
();
++
i
)
{
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
accum_gradient
[
i
]
=
rho
*
accum_gradient
[
i
]
+
(
1.0
-
rho
)
*
gradient
[
i
]
*
gradient
[
i
];
...
...
@@ -36,7 +29,8 @@ void AdadeltaOptimizer<T>::update(const Tensor<T>& gradient) {
accum_delta
[
i
]
=
rho
*
accum_delta
[
i
]
+
(
1.0
-
rho
)
*
update_delta
[
i
]
*
update_delta
[
i
];
parameter_
[
i
]
-=
update_delta
[
i
]
+
decay
*
parameter_
[
i
];
parameter_
[
i
]
-=
learning_rate
*
update_delta
[
i
]
+
learning_rate
*
decay
*
parameter_
[
i
];
}
}
...
...
paddle/optimizer/adadelta_optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -9,7 +9,12 @@ namespace optimizer {
template
<
class
T
>
class
AdadeltaOptimizer
:
public
ParameterOptimizer
<
T
>
{
public:
AdadeltaOptimizer
(
const
OptimizerConfig
&
config
);
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
AdadeltaOptimizer
(
double
rho
,
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
rho
(
rho
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
~
AdadeltaOptimizer
()
{
if
(
accum_gradient
)
delete
accum_gradient
;
if
(
accum_delta
)
delete
accum_delta
;
...
...
paddle/optimizer/adagrad_optimizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -3,11 +3,6 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
AdagradOptimizer
<
T
>::
AdagradOptimizer
(
const
::
paddle
::
OptimizerConfig
&
config
)
:
ParameterOptimizer
<
T
>
(
config
)
{
epsilon
=
config
.
adagrad
().
epsilon
();
decay
=
config
.
adagrad
().
decay
();
}
template
<
class
T
>
void
AdagradOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>*
p
)
{
...
...
paddle/optimizer/adagrad_optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -9,7 +9,11 @@ namespace optimizer {
template
<
class
T
>
class
AdagradOptimizer
:
public
ParameterOptimizer
<
T
>
{
public:
AdagradOptimizer
(
const
OptimizerConfig
&
config
);
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
AdagradOptimizer
(
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
~
AdagradOptimizer
()
{
if
(
accum_gradient
)
delete
accum_gradient
;
}
...
...
paddle/optimizer/adam_optimizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -2,14 +2,6 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
AdamOptimizer
<
T
>::
AdamOptimizer
(
const
::
paddle
::
OptimizerConfig
&
config
)
:
ParameterOptimizer
<
T
>
(
config
)
{
beta_1
=
config
.
adam
().
beta_1
();
beta_2
=
config
.
adam
().
beta_2
();
epsilon
=
config
.
adam
().
epsilon
();
decay
=
config
.
adam
().
decay
();
}
template
<
class
T
>
void
AdamOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>
*
p
)
{
...
...
@@ -23,11 +15,16 @@ void AdamOptimizer<T>::set_weight(const Tensor<T> *p) {
template
<
class
T
>
void
AdamOptimizer
<
T
>::
update
(
const
Tensor
<
T
>
&
gradient
)
{
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
();
for
(
size_t
i
=
0
;
i
<
parameter_
.
size
();
++
i
)
{
accum_gradient
[
i
]
+=
gradient
[
i
]
*
gradient
[
i
];
parameter_
[
i
]
+=
learning_rate
*
(
gradient
[
i
]
/
std
::
sqrt
(
accum_gradient
[
i
]
+
epsilon
)
+
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
double
coef1
=
1.0
-
std
::
pow
(
beta_1
,
num_sample_passed
);
double
coef2
=
1.0
-
std
::
pow
(
beta_2
,
num_sample_passed
);
learning_rate
*=
std
::
sqrt
(
coef2
)
/
coef1
;
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
momentums_
[
i
]
=
beta_1
*
momentums_
[
i
]
+
(
1.0
-
beta_1
)
*
gradient
[
i
];
velocitys_
[
i
]
=
beta_2
*
velocitys_
[
i
]
+
(
1.0
-
beta_2
)
*
gradient
[
i
]
*
gradient
[
i
];
parameter_
[
i
]
-=
learning_rate
*
(
momentums_
[
i
]
/
std
::
sqrt
(
velocitys_
[
i
]
+
epsilon
)
+
decay
*
parameter_
[
i
]);
}
}
...
...
paddle/optimizer/adam_optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -9,8 +9,20 @@ namespace optimizer {
template
<
class
T
>
class
AdamOptimizer
:
public
ParameterOptimizer
<
T
>
{
public:
AdamOptimizer
(
const
OptimizerConfig
&
config
);
~
AdamOptimizer
()
{}
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
AdamOptimizer
(
double
beta_1
,
double
beta_2
,
double
epsilon
,
double
decay
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
beta_1
(
beta_1
),
beta_2
(
beta_2
),
epsilon
(
epsilon
),
decay
(
decay
)
{}
~
AdamOptimizer
()
{
if
(
momentums_
)
delete
momentums_
;
if
(
velocitys_
)
delete
velocitys_
;
}
void
update
(
const
Tensor
<
T
>
&
gradient
);
void
set_weight
(
const
Tensor
<
T
>
*
p
);
T
*
get_weight
()
const
;
...
...
paddle/optimizer/lr_policy.h
浏览文件 @
5b8a0c5d
#ifndef PADDLE_OPTIMIZER_LR_POLICY_H_
#define PADDLE_OPTIMIZER_LR_POLICY_H_
#include "OptimizerConfig.p
h
.h"
#include "OptimizerConfig.p
b
.h"
namespace
paddle
{
namespace
optimizer
{
class
BaseLr
{
public:
LrPolicyBase
(
const
OpitmizerConfig
&
config
)
{
learning_rate
=
config
.
lr_config
().
learning_rate
();
}
BaseLr
(
double
lr
)
:
learning_rate
(
lr
)
{}
virtual
~
BaseLr
()
{}
virtual
double
get_learning_rate
(
const
uint64_t
num_sample_passed
)
=
0
;
pr
ivate
:
pr
otected
:
double
learning_rate
;
};
...
...
paddle/optimizer/optimizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -3,7 +3,7 @@
#include "parameter_optimizer.h"
template
<
class
T
>
template
<
paddle_element_type
T
>
struct
EnumToType
{};
template
<
class
T
>
...
...
@@ -11,15 +11,14 @@ struct TypeToEnum {};
#define MATCH_ENUM_TYPE(TYPE, ENUM) \
template <> \
struct TypeToEnum<
ENUM
> { \
struct TypeToEnum<
TYPE
> { \
static paddle_element_type v() { return ENUM; }; \
static constexpr TYPE value = ENUM;
}
;
template
<
>
struct
EnumToType
<
ENUM
>
{
typedef
TYPE
Type
;
}
static constexpr TYPE value = ENUM; \
}; \
template <> \
struct EnumToType<ENUM> { \
typedef TYPE Type; \
}
MATCH_ENUM_TYPE
(
int32_t
,
PADDLE_ELEMENT_TYPE_INT32
);
MATCH_ENUM_TYPE
(
uint32_t
,
PADDLE_ELEMENT_TYPE_UINT32
);
...
...
@@ -27,11 +26,10 @@ MATCH_ENUM_TYPE(int64_t, PADDLE_ELEMENT_TYPE_INT64);
MATCH_ENUM_TYPE
(
uint64_t
,
PADDLE_ELEMENT_TYPE_UINT64
);
MATCH_ENUM_TYPE
(
float
,
PADDLE_ELEMENT_TYPE_FLOAT32
);
MATCH_ENUM_TYPE
(
double
,
PADDLE_ELEMENT_TYPE_FLOAT64
);
struct
paddle_optimizer
{
struct
paddle_optimizer
{
/*! \brief optmizer in C++ side */
paddle
::
optimizer
::
ParameterOptim
zier
*
impl
;
paddle
::
optimizer
::
ParameterOptim
izerBase
*
impl
;
};
paddle_optimizer
*
paddle_create_optimizer
(
const
unsigned
char
*
config_proto
,
...
...
@@ -48,7 +46,7 @@ int paddle_release_optimizer(paddle_optimizer* o) {
}
int
paddle_update_parameter
(
paddle_optimizer
*
o
,
paddle_element_type
data_type
,
const
paddle_element_type
data_type
,
const
void
*
grad_buffer
,
int
num_bytes
)
{
auto
type
=
EnumToType
<
data_type
>::
Type
;
...
...
@@ -59,7 +57,7 @@ int paddle_update_parameter(paddle_optimizer* o,
}
int
paddle_optimizer_set_weights
(
paddle_optimizer
*
o
,
paddle_element_type
data_type
,
const
paddle_element_type
data_type
,
void
*
param_buffer
,
int
num_bytes
)
{
auto
type
=
EnumToType
<
data_type
>::
Type
;
...
...
paddle/optimizer/optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -64,7 +64,7 @@ int paddle_release_optimizer(paddle_optimizer* o);
* @return return exec status
*/
int
paddle_update_parameter
(
paddle_optimizer
*
o
,
paddle_element_type
data_type
,
const
paddle_element_type
data_type
,
const
void
*
gradient
,
int
num_bytes
);
...
...
@@ -76,7 +76,7 @@ int paddle_update_parameter(paddle_optimizer* o,
* @return return exec status
*/
int
paddle_optimizer_set_weights
(
paddle_optimizer
*
o
,
paddle_element_type
data_type
,
const
paddle_element_type
data_type
,
void
*
param_buffer
,
int
num_bytes
);
...
...
paddle/optimizer/parameter_optimizer.cc
浏览文件 @
5b8a0c5d
#include "parameter_optimizer.h"
#include <glog/logging.h>
#include "optimizer_factory.h"
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
#include "adam_optimizer.h"
#include "lr_policy.h"
#include "sgd_optimizer.h"
#include "parameter_optimizer.h"
namespace
paddle
{
namespace
optimizer
{
...
...
@@ -12,29 +17,40 @@ ParameterOptimizer<T> *ParameterOptimizer<T>::create(
CHECK
(
config
.
ParseFromString
(
config_proto
)
==
0
)
<<
"error : optimizer config"
;
CHECK
(
config_valid
(
config
)
==
0
)
<<
"error : invalid optimizer config "
;
BaseLr
*
lr
=
nullptr
;
switch
(
config
.
lr_policy
())
{
case
"ConstLr"
:
lr
=
new
ConstLr
(
config
.
lr_config
().
learning_rate
());
break
;
}
ParameterOptimizer
<
T
>
*
opt
=
nullptr
;
switch
(
config
.
optimizer_name
())
{
case
"SGD"
:
opt
=
new
SGDOptimizer
<
T
>
(
config
);
opt
=
new
SGDOptimizer
<
T
>
(
config
.
sgd
().
momentum
(),
config
.
sgd
().
decay
(),
config
.
sgd
().
nesterov
(),
lr
);
break
;
case
"Adagrad"
:
opt
=
new
AdagradOptimizer
<
T
>
(
config
);
opt
=
new
AdagradOptimizer
<
T
>
(
config
.
adagrad
().
epsilon
(),
config
.
adagrad
().
decay
(),
lr
);
break
;
case
"Adadelta"
:
opt
=
new
AdadeltaOptimizer
<
T
>
(
config
);
opt
=
new
AdadeltaOptimizer
<
T
>
(
config
.
adadelta
().
rho
(),
config
.
adadelta
().
epsilon
(),
config
.
adadelta
().
decay
(),
lr
);
break
;
case
"Adam"
:
opt
=
new
AdamOptimizer
<
T
>
(
config
);
opt
=
new
AdamOptimizer
<
T
>
(
config
.
adam
().
beta_1
(),
config
.
adam
().
beta_2
(),
config
.
adam
().
epsilon
(),
config
.
adam
().
decay
(),
lr
);
break
;
default:
opt
=
new
SGDOptimizer
<
T
>
(
config
);
}
switch
(
config
.
lr_policy
())
{
case
"ConstLr"
:
opt
.
lr_policy
=
new
ConstLr
(
config
);
break
;
}
return
opt
;
}
...
...
paddle/optimizer/parameter_optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -11,6 +11,12 @@
namespace
paddle
{
namespace
optimizer
{
class
ParameterOptimizerBase
{
private:
ParameterOptimizerBase
(
const
ParameterOptimizerBase
&
)
=
delete
;
ParameterOptimizerBase
&
operator
=
(
const
ParameterOptimizerBase
&
)
=
delete
;
};
template
<
class
T
>
class
ParameterOptimizer
{
public:
...
...
@@ -18,18 +24,18 @@ public:
* @brief update hook for algorithm need to traverse parameter more than
* once.
*/
// use config for pack trainig state
ParameterOptimizer
(
const
OptimizerConfig
&
config
)
:
config_
(
config
){};
ParameterOptimizer
(
BaseLr
*
lr
)
:
lr_policy
(
lr
),
num_sample_passed
(
0
)
{}
virtual
~
ParameterOptimizer
()
{
delete
parameter_
;
};
static
ParameterOptimizer
*
create
(
const
::
std
::
string
&
config_proto
);
virtual
void
update
(
const
Tensor
&
gradient
)
=
0
;
virtual
void
destroy
()
=
0
;
virtual
void
update
(
const
Tensor
<
T
>
&
gradient
)
=
0
;
virtual
T
*
get_weight
()
const
;
virtual
void
set_weight
(
const
Tensor
<
T
>
*
parameter
);
// package optimizer config proto in runtime for saving checkpoint
virtual
char
*
get_config_proto
();
~
ParameterOptimzier
()
{
delete
parameter_
;
}
p
rivate
:
p
ublic
:
bool
config_valid
(
::
std
::
string
&
config
)
const
;
OptimizerConfig
config_
;
Tensor
<
T
>
*
parameter_
;
...
...
@@ -37,12 +43,6 @@ private:
// learning rate policy
BaseLr
*
lr_policy
;
uint64_t
num_sample_passed
;
ParameterOptimizer
(
const
ParameterOptimizer
&
)
=
delete
;
ParameterOptimizer
&
operator
=
(
const
ParameterOptimizer
&
)
=
delete
;
/**
* @brief indicate if use L1, L2 regularizer
*/
};
}
// namespace optimizer
...
...
paddle/optimizer/regularizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -19,6 +19,8 @@ Regularizer<T>* Regularizer<T>::create(const std::string& config) {
template
class
L1Regularizer
<
float
>;
template
class
L1Regularizer
<
double
>;
template
class
L2Regularizer
<
float
>;
template
class
L2Regularizer
<
double
>;
}
// namespace optimizer
}
// namespace paddle
paddle/optimizer/sgd_optimizer.h
浏览文件 @
5b8a0c5d
...
...
@@ -9,8 +9,18 @@ namespace optimizer {
template
<
class
T
>
class
SGDOptimizer
:
public
ParameterOptimizer
<
T
>
{
public:
SGDOptimizer
(
const
::
paddle
::
OptimizerConfig
&
config
);
~
SGDOptimizer
()
{
using
ParameterOptimizer
<
T
>::
parameter_
;
using
ParameterOptimizer
<
T
>::
num_sample_passed
;
using
ParameterOptimizer
<
T
>::
lr_policy
;
SGDOptimizer
(
double
m
,
double
d
,
bool
n
,
double
learning_rate
,
uint64_t
num_sample_passed
,
BaseLr
*
lr
)
:
ParameterOptimizer
<
T
>
(
lr
),
momentum
(
m
),
decay
(
d
),
nesterov
(
n
)
{}
virtual
~
SGDOptimizer
()
{
// clear memory by Tensor library
delete
momentums_
;
}
...
...
@@ -18,7 +28,6 @@ public:
void
set_weight
(
const
Tensor
<
T
>*
p
);
T
*
get_weight
()
const
;
char
*
get_config_proto
();
private:
Tensor
<
T
>*
momentums_
;
...
...
paddle/optimizer/sgd_optmizer.cc
浏览文件 @
5b8a0c5d
...
...
@@ -3,18 +3,10 @@
namespace
paddle
{
namespace
optimizer
{
template
<
class
T
>
SGDOptimizer
<
T
>::
SGDOptimizer
(
const
::
paddle
::
OptimizerConfig
&
config
)
:
ParameterOptimizer
<
T
>
(
config
)
{
momentum
=
config
.
sgd
().
momentum
();
decay
=
config
.
sgd
().
decay
();
nesterov
=
config
.
sgd
().
nesterov
();
}
template
<
class
T
>
void
SGDOptimizer
<
T
>::
set_weight
(
const
Tensor
<
T
>
*
p
)
{
// ParameterOptimizer::set_weight(p);
size_t
size
=
p
->
width
();
size_t
size
=
p
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
if
(
momentum
!=
0.0
)
{
T
*
ptr
=
new
T
[
size
];
...
...
@@ -27,7 +19,7 @@ void SGDOptimizer<T>::update(const Tensor<T> &gradient) {
num_sample_passed
+=
1
;
double
learning_rate
=
lr_policy
->
get_learning_rate
(
num_sample_passed
);
double
velocity
=
0.0
;
for
(
size_t
i
=
0
;
i
<
parameter_
.
size
();
++
i
)
{
Tensor
<
T
>
&
for
(
size_t
i
=
0
;
i
<
parameter_
->
size
();
++
i
)
{
if
(
momentum
==
0.0
)
{
velocity
=
-
learning_rate
*
gradient
[
i
]
-
learning_rate
*
decay
*
parameter_
[
i
];
...
...
@@ -44,15 +36,6 @@ void SGDOptimizer<T>::update(const Tensor<T> &gradient) {
}
}
template
<
class
T
>
char
*
SGDOptimizer
<
T
>::
get_config_proto
()
{
ParameterOptimizer
::
get_config_proto
();
config
.
set_learning_rate
(
learning_rate
);
config
.
set_decay
(
decay
);
config
.
set_nesterov
(
nesterov
);
return
config
.
SerializeAsString
().
c_str
();
}
template
class
SGDOptimizer
<
float
>;
template
class
SGDOptimizer
<
double
>;
...
...
proto/OptimizerConfig.proto
浏览文件 @
5b8a0c5d
...
...
@@ -12,7 +12,7 @@ message SGDConfig {
optional
double
momentum
=
21
[
default
=
0.0
];
optional
double
decay
=
23
[
default
=
0.0
];
optional
bool
nesterov
=
24
[
default
=
false
];
}
message
AdadeltaConfig
{
...
...
@@ -95,5 +95,4 @@ message OptimizerConfig {
// common config of optimizer
optional
double
clipnorm
=
101
;
optional
double
clipvalue
=
102
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录