Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
70782e63
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
70782e63
编写于
4月 03, 2020
作者:
Z
Zhaolong Xing
提交者:
GitHub
4月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Inference doc]: refine paddle_api.h doc (#23354)
* refine paddle api doc test=develop * fix comments test=develop
上级
bcafe317
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
82 addition
and
61 deletion
+82
-61
paddle/fluid/inference/api/paddle_api.h
paddle/fluid/inference/api/paddle_api.h
+82
-61
未找到文件。
paddle/fluid/inference/api/paddle_api.h
浏览文件 @
70782e63
...
...
@@ -143,42 +143,69 @@ struct PaddleTensor {
enum
class
PaddlePlace
{
kUNK
=
-
1
,
kCPU
,
kGPU
};
/** Tensor without copy, currently only supports `AnalysisPredictor`.
*/
/// \brief Represents an n-dimensional array of values.
/// The ZeroCopyTensor is used to store the input or output of the network.
/// Zero copy means that the tensor supports direct copy of host or device data
/// to device,
/// eliminating additional CPU copy. ZeroCopyTensor is only used in the
/// AnalysisPredictor.
/// It is obtained through PaddlePredictor::GetinputTensor()
/// and PaddlePredictor::GetOutputTensor() interface.
class
ZeroCopyTensor
{
public:
/// \brief Reset the shape of the tensor.
/// Generally it's only used for the input tensor.
/// Reshape must be called before calling mutable_data() or copy_from_cpu()
/// \param shape The shape to set.
void
Reshape
(
const
std
::
vector
<
int
>&
shape
);
/** Get the memory in CPU or GPU with specific data type, should Reshape first
* to tell the data size.
* One can directly call this data to feed the data.
* This is for writing the input tensor.
*/
/// \brief Get the memory pointer in CPU or GPU with specific data type.
/// Please Reshape the tensor first before call this.
/// It's usually used to get input data pointer.
/// \param place The place of the tensor.
template
<
typename
T
>
T
*
mutable_data
(
PaddlePlace
place
);
/** Get the memory directly, will return the place and element size by
* pointer.
* This is for reading the output tensor.
*/
/// \brief Get the memory pointer directly.
/// It's usually used to get the output data pointer.
/// \param[out] place To get the device type of the tensor.
/// \param[out] size To get the data size of the tensor.
/// \return The tensor data buffer pointer.
template
<
typename
T
>
T
*
data
(
PaddlePlace
*
place
,
int
*
size
)
const
;
/// \brief Copy the host memory to tensor data.
/// It's usually used to set the input tensor data.
/// \param data The pointer of the data, from which the tensor will copy.
template
<
typename
T
>
void
copy_from_cpu
(
const
T
*
data
);
/// \brief Copy the tensor data to the host memory.
/// It's usually used to get the output tensor data.
/// \param[out] data The tensor will copy the data to the address.
template
<
typename
T
>
void
copy_to_cpu
(
T
*
data
);
/// \brief Return the shape of the Tensor.
std
::
vector
<
int
>
shape
()
const
;
/// \brief Set lod info of the tensor.
/// More about LOD can be seen here:
/// https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#lodtensor
/// \param x the lod info.
void
SetLoD
(
const
std
::
vector
<
std
::
vector
<
size_t
>>&
x
);
/// \brief Return the lod info of the tensor.
std
::
vector
<
std
::
vector
<
size_t
>>
lod
()
const
;
/// \brief Return the name of the tensor.
const
std
::
string
&
name
()
const
{
return
name_
;
}
void
SetPlace
(
PaddlePlace
place
,
int
device
=
-
1
)
{
place_
=
place
;
device_
=
device
;
}
/// \brief Return the data type of the tensor.
/// It's usually used to get the output tensor data type.
/// \return The data type of the tensor.
PaddleDType
type
()
const
;
protected:
...
...
@@ -199,8 +226,8 @@ class ZeroCopyTensor {
int
device_
;
};
/
** A simple Inference API for Paddle
.
*/
/
// \brief A Predictor for executing inference on a model
.
/// Base class for AnalysisPredictor and NativePaddlePredictor.
class
PaddlePredictor
{
public:
struct
Config
;
...
...
@@ -208,85 +235,79 @@ class PaddlePredictor {
PaddlePredictor
(
const
PaddlePredictor
&
)
=
delete
;
PaddlePredictor
&
operator
=
(
const
PaddlePredictor
&
)
=
delete
;
/** Predict an record.
* The caller should be responsible for allocating and releasing the memory of
* `inputs`. `inputs` should be available until Run returns. Caller should be
* responsible for the output tensor's buffer, either allocated or passed from
* outside.
*/
/// \brief This interface takes input and runs the network.
/// There are redundant copies of data between hosts in this operation,
/// so it is more recommended to use the zecopyrun interface
/// \param[in] inputs An list of PaddleTensor as the input to the network.
/// \param[out] output_data Pointer to the tensor list, which holds the output
/// paddletensor
/// \param[in] batch_size This setting has been discarded and can be ignored.
/// \return Whether the run is successful
virtual
bool
Run
(
const
std
::
vector
<
PaddleTensor
>&
inputs
,
std
::
vector
<
PaddleTensor
>*
output_data
,
int
batch_size
=
-
1
)
=
0
;
/** \brief Get input names of the model
*/
/// \brief Used to get the name of the network input.
/// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios.
/// \return Input tensor names.
virtual
std
::
vector
<
std
::
string
>
GetInputNames
()
{
return
{};
}
/
** \brief Get input shapes of the model
*/
/
// \brief Get the input shape of the model.
/// \return A map contains all the input names and shape defined in the model.
virtual
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
GetInputTensorShape
()
{
return
{};
}
/** \brief Get output names of the model
*/
/// \brief Used to get the name of the network output.
/// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios.
/// \return Output tensor names.
virtual
std
::
vector
<
std
::
string
>
GetOutputNames
()
{
return
{};
}
/** \brief Get a mutable tensor directly.
*
* NOTE Only works in AnalysisPredictor.
*
* One can also use this to modify any temporary variable related tensors in
* the predictor.
*
*/
/// \brief Get the input ZeroCopyTensor by name.
/// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios.
/// The name is obtained from the GetInputNames() interface.
/// \param name The input tensor name.
/// \return Return the corresponding input ZeroCopyTensor.
virtual
std
::
unique_ptr
<
ZeroCopyTensor
>
GetInputTensor
(
const
std
::
string
&
name
)
{
return
nullptr
;
}
/**
* \brief Get an immutable tensor without copy.
*
* NOTE Only works in AnalysisPredictor.
* One can use this API to get any temporary tensors in the predictor and
* read it.
*/
/// \brief Get the output ZeroCopyTensor by name.
/// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios.
/// The name is obtained from the GetOutputNames() interface.
/// \param name The output tensor name.
/// \return Return the corresponding output ZeroCopyTensor.
virtual
std
::
unique_ptr
<
ZeroCopyTensor
>
GetOutputTensor
(
const
std
::
string
&
name
)
{
return
nullptr
;
}
/**
* \brief Run the predictor with zero-copied inputs and outputs.
*
* NOTE Only works in AnalysisPredictor.
*
* This will save the IO copy for transfering inputs and outputs to predictor
* workspace and get some performance improvement.
* To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)`
* and then use the `GetInputTensor` and `GetOutputTensor` to directly write
* or read the input/output tensors.
*/
/// \brief Run the network with zero-copied inputs and outputs.
/// Be inherited by AnalysisPredictor and only used in ZeroCopy scenarios.
/// This will save the IO copy for transfering inputs and outputs to predictor
/// workspace
/// and get some performance improvement.
/// To use it, one should call the AnalysisConfig.SwitchUseFeedFetchOp(true)
/// and then use the `GetInputTensor` and `GetOutputTensor`
/// to directly write or read the input/output tensors.
/// \return Whether the run is successful
virtual
bool
ZeroCopyRun
()
{
return
false
;
}
/** Clone a predictor that share the model weights, the Cloned predictor
* should be thread-safe.
*/
/// \brief Clone an existing predictor
/// When using clone, the same network will be created,
/// and the parameters between them are shared.
/// \return unique_ptr which contains the pointer of predictor
virtual
std
::
unique_ptr
<
PaddlePredictor
>
Clone
()
=
0
;
/** Destroy the Predictor.
*/
/// \brief Destroy the Predictor.
virtual
~
PaddlePredictor
()
=
default
;
/** \brief Get the serialized model program that executes in inference phase.
* Its data type is ProgramDesc, which is a protobuf message.
*/
virtual
std
::
string
GetSerializedProgram
()
const
{
assert
(
false
);
// Force raise error.
return
"NotImplemented"
;
}
/** The common configs for all the predictors.
*/
/// \brief Base class for NativeConfig and AnalysisConfig.
struct
Config
{
std
::
string
model_dir
;
/*!< path to the model directory. */
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录