Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7e145b7c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e145b7c
编写于
1月 28, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize test_async_ssa_graph_executor_mnist
上级
9da96aba
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
31 addition
and
107 deletion
+31
-107
python/paddle/fluid/tests/unittests/test_async_ssa_graph_executor_mnist.py
...id/tests/unittests/test_async_ssa_graph_executor_mnist.py
+31
-107
未找到文件。
python/paddle/fluid/tests/unittests/test_async_ssa_graph_executor_mnist.py
浏览文件 @
7e145b7c
...
@@ -15,13 +15,13 @@
...
@@ -15,13 +15,13 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
os
import
os
from
PIL
import
Image
import
unittest
import
numpy
import
numpy
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
BATCH_SIZE
=
64
BATCH_SIZE
=
64
PASS_NUM
=
5
def
loss_net
(
hidden
,
label
):
def
loss_net
(
hidden
,
label
):
...
@@ -51,11 +51,9 @@ def convolutional_neural_network(img, label):
...
@@ -51,11 +51,9 @@ def convolutional_neural_network(img, label):
return
loss_net
(
conv_pool_2
,
label
)
return
loss_net
(
conv_pool_2
,
label
)
def
train
(
use_cuda
,
def
train
(
use_cuda
,
thread_num
,
cpu_num
):
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
print
(
"paddle is not compiled with cuda, exit!"
)
return
return
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
...
@@ -84,8 +82,6 @@ def train(use_cuda,
...
@@ -84,8 +82,6 @@ def train(use_cuda,
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
...
@@ -94,24 +90,22 @@ def train(use_cuda,
...
@@ -94,24 +90,22 @@ def train(use_cuda,
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
main_program
=
fluid
.
default_main_program
()
exec_strategy
=
fluid
.
ExecutionStrategy
()
os
.
environ
[
'CPU_NUM'
]
=
str
(
cpu_num
)
build_strategy
=
fluid
.
BuildStrategy
()
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
))
thread_num
=
int
(
os
.
getenv
(
"NUM_THREADS"
))
print
(
"cpu_num:"
+
str
(
cpu_num
))
print
(
"cpu_num:"
+
str
(
cpu_num
))
print
(
"thread_num:"
+
str
(
thread_num
))
print
(
"thread_num:"
+
str
(
thread_num
))
build_strategy
.
async_mode
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
async_mode
=
True
# enable async mode
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
num_threads
=
thread_num
exec_strategy
.
num_threads
=
thread_num
exec_strategy
.
num_iteration_per_drop_scope
=
1
exec_strategy
.
num_iteration_per_run
=
2
exec_strategy
.
num_iteration_per_run
=
10
main_program
=
fluid
.
default_main_program
()
pe
=
fluid
.
ParallelExecutor
(
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
False
,
use_cuda
=
False
,
loss_name
=
avg_loss
.
name
,
loss_name
=
avg_loss
.
name
,
...
@@ -119,96 +113,26 @@ def train(use_cuda,
...
@@ -119,96 +113,26 @@ def train(use_cuda,
build_strategy
=
build_strategy
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
exec_strategy
=
exec_strategy
)
lists
=
[]
step
=
0
step
=
0
for
epoch_id
in
range
(
PASS_NUM
):
for
step_id
,
data
in
enumerate
(
train_reader
()):
for
step_id
,
data
in
enumerate
(
train_reader
()):
loss_val
=
pe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
.
name
])
loss_val
,
acc_val
=
pe
.
run
(
feed
=
feeder
.
feed
(
data
),
loss_val
=
numpy
.
mean
(
loss_val
)
fetch_list
=
[
avg_loss
.
name
,
acc
.
name
])
if
step
%
100
==
0
:
loss_val
=
numpy
.
mean
(
loss_val
)
print
(
"Batch %d, Cost %f"
%
(
step
,
loss_val
))
acc_val
=
numpy
.
mean
(
acc_val
)
step
+=
1
if
step
%
100
==
0
:
# test for epoch
print
(
"Pass %d, Batch %d, Cost %f"
%
(
epoch_id
,
step
,
loss_val
))
avg_loss_val
,
acc_val
=
train_test
(
step
+=
1
train_test_program
=
test_program
,
# test for epoch
train_test_reader
=
test_reader
,
avg_loss_val
,
acc_val
=
train_test
(
train_test_feed
=
feeder
)
train_test_program
=
test_program
,
train_test_reader
=
test_reader
,
print
(
"Test: avg_cost: %s, acc: %s"
%
(
avg_loss_val
,
acc_val
))
train_test_feed
=
feeder
)
print
(
"Test with Epoch %d, avg_cost: %s, acc: %s"
%
class
TestAsyncSSAGraphExecutor
(
unittest
.
TestCase
):
(
epoch_id
,
avg_loss_val
,
acc_val
))
def
test_check_async_ssa_exe_train
(
self
):
lists
.
append
((
epoch_id
,
avg_loss_val
,
acc_val
))
train
(
use_cuda
=
False
,
thread_num
=
2
,
cpu_num
=
2
)
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"img"
],
[
prediction
],
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
# find the best pass
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
print
(
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
]))
print
(
'The classification accuracy is %.2f%%'
%
(
float
(
best
[
2
])
*
100
))
def
infer
(
use_cuda
,
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
def
load_image
(
file
):
if
__name__
==
"__main__"
:
im
=
Image
.
open
(
file
).
convert
(
'L'
)
unittest
.
main
()
im
=
im
.
resize
((
28
,
28
),
Image
.
ANTIALIAS
)
im
=
numpy
.
array
(
im
).
reshape
(
1
,
1
,
28
,
28
).
astype
(
numpy
.
float32
)
im
=
im
/
255.0
*
2.0
-
1.0
return
im
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
tensor_img
=
load_image
(
cur_dir
+
'/image/infer_3.png'
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
,
model_filename
,
params_filename
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
lab
=
numpy
.
argsort
(
results
)
print
(
"Inference result of image/infer_3.png is: %d"
%
lab
[
0
][
0
][
-
1
])
def
main
(
use_cuda
):
model_filename
=
None
params_filename
=
None
save_dirname
=
"recognize_digits"
+
".inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
if
__name__
==
'__main__'
:
use_cuda
=
False
main
(
use_cuda
=
use_cuda
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录