Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9da96aba
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9da96aba
编写于
1月 27, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean code of test_async_ssa_graph_executor_mnist
上级
be738a64
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
214 addition
and
0 deletion
+214
-0
python/paddle/fluid/tests/unittests/test_async_ssa_graph_executor_mnist.py
...id/tests/unittests/test_async_ssa_graph_executor_mnist.py
+214
-0
未找到文件。
python/paddle/fluid/tests/unittests/test_async_ssa_graph_executor_mnist.py
0 → 100644
浏览文件 @
9da96aba
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
from
PIL
import
Image
import
numpy
import
paddle
import
paddle.fluid
as
fluid
BATCH_SIZE
=
64
PASS_NUM
=
5
def
loss_net
(
hidden
,
label
):
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
prediction
,
avg_loss
,
acc
def
convolutional_neural_network
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
return
loss_net
(
conv_pool_2
,
label
)
def
train
(
use_cuda
,
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
prediction
,
avg_loss
,
acc
=
convolutional_neural_network
(
img
,
label
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_loss
)
def
train_test
(
train_test_program
,
train_test_feed
,
train_test_reader
):
acc_set
=
[]
avg_loss_set
=
[]
for
test_data
in
train_test_reader
():
acc_np
,
avg_loss_np
=
exe
.
run
(
program
=
train_test_program
,
feed
=
train_test_feed
.
feed
(
test_data
),
fetch_list
=
[
acc
,
avg_loss
])
acc_set
.
append
(
float
(
acc_np
))
avg_loss_set
.
append
(
float
(
avg_loss_np
))
# get test acc and loss
acc_val_mean
=
numpy
.
array
(
acc_set
).
mean
()
avg_loss_val_mean
=
numpy
.
array
(
avg_loss_set
).
mean
()
return
avg_loss_val_mean
,
acc_val_mean
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
main_program
=
fluid
.
default_main_program
()
exec_strategy
=
fluid
.
ExecutionStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
))
thread_num
=
int
(
os
.
getenv
(
"NUM_THREADS"
))
print
(
"cpu_num:"
+
str
(
cpu_num
))
print
(
"thread_num:"
+
str
(
thread_num
))
build_strategy
.
async_mode
=
True
exec_strategy
.
num_threads
=
thread_num
exec_strategy
.
num_iteration_per_drop_scope
=
1
exec_strategy
.
num_iteration_per_run
=
10
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
False
,
loss_name
=
avg_loss
.
name
,
main_program
=
main_program
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
lists
=
[]
step
=
0
for
epoch_id
in
range
(
PASS_NUM
):
for
step_id
,
data
in
enumerate
(
train_reader
()):
loss_val
,
acc_val
=
pe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
.
name
,
acc
.
name
])
loss_val
=
numpy
.
mean
(
loss_val
)
acc_val
=
numpy
.
mean
(
acc_val
)
if
step
%
100
==
0
:
print
(
"Pass %d, Batch %d, Cost %f"
%
(
epoch_id
,
step
,
loss_val
))
step
+=
1
# test for epoch
avg_loss_val
,
acc_val
=
train_test
(
train_test_program
=
test_program
,
train_test_reader
=
test_reader
,
train_test_feed
=
feeder
)
print
(
"Test with Epoch %d, avg_cost: %s, acc: %s"
%
(
epoch_id
,
avg_loss_val
,
acc_val
))
lists
.
append
((
epoch_id
,
avg_loss_val
,
acc_val
))
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"img"
],
[
prediction
],
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
# find the best pass
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
print
(
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
]))
print
(
'The classification accuracy is %.2f%%'
%
(
float
(
best
[
2
])
*
100
))
def
infer
(
use_cuda
,
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
def
load_image
(
file
):
im
=
Image
.
open
(
file
).
convert
(
'L'
)
im
=
im
.
resize
((
28
,
28
),
Image
.
ANTIALIAS
)
im
=
numpy
.
array
(
im
).
reshape
(
1
,
1
,
28
,
28
).
astype
(
numpy
.
float32
)
im
=
im
/
255.0
*
2.0
-
1.0
return
im
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
tensor_img
=
load_image
(
cur_dir
+
'/image/infer_3.png'
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
,
model_filename
,
params_filename
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
lab
=
numpy
.
argsort
(
results
)
print
(
"Inference result of image/infer_3.png is: %d"
%
lab
[
0
][
0
][
-
1
])
def
main
(
use_cuda
):
model_filename
=
None
params_filename
=
None
save_dirname
=
"recognize_digits"
+
".inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
if
__name__
==
'__main__'
:
use_cuda
=
False
main
(
use_cuda
=
use_cuda
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录