From 7c0cc113d92dfebb11bf689924a47f7ae520e739 Mon Sep 17 00:00:00 2001 From: Yang Yu Date: Tue, 30 Jan 2018 14:56:01 +0800 Subject: [PATCH] Test word2vec for parallel.do * Polish sum_op support SelectedRows in_place --- paddle/operators/sum_op.h | 49 +++++-- .../v2/fluid/tests/book/test_word2vec.py | 133 ++++++++++++------ 2 files changed, 125 insertions(+), 57 deletions(-) diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index 48201b344de..3d8102c3ae2 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -68,7 +68,32 @@ class SumKernel : public framework::OpKernel { } } } else if (out_var->IsType()) { - PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now"); + std::unique_ptr in0; + if (in_place) { + // If is in_place, we store the input[0] to in0 + auto &in_sel0 = in_vars[0]->Get(); + auto &rows = in_sel0.rows(); +#ifdef PADDLE_WITH_CUDA + std::vector rows_in_cpu; + rows_in_cpu.reserve(rows.size()); + for (auto item : rows) { + rows_in_cpu.push_back(item); + } + in0.reset(new framework::SelectedRows(rows_in_cpu, in_sel0.height())); +#else + in0.reset(new framework::SelectedRows(rows, in_sel0.height())); +#endif + in0->mutable_value()->ShareDataWith(in_sel0.value()); + } + + auto get_selected_row = [&](size_t i) -> const SelectedRows & { + if (i == 0 && in0) { + return *in0.get(); + } else { + return in_vars[i]->Get(); + } + }; + auto *out = context.Output("Out"); out->mutable_rows()->clear(); auto *out_value = out->mutable_value(); @@ -76,24 +101,26 @@ class SumKernel : public framework::OpKernel { // Runtime InferShape size_t first_dim = 0; for (int i = 0; i < N; i++) { - first_dim += in_vars[i]->Get().rows().size(); + auto &sel_row = get_selected_row(i); + first_dim += sel_row.rows().size(); } - auto in_dim = in_vars[0]->Get().value().dims(); - auto in_dim_vec = framework::vectorize(in_dim); - in_dim_vec[0] = static_cast(first_dim); + auto in_dim = + framework::vectorize(get_selected_row(N - 1).value().dims()); + in_dim[0] = static_cast(first_dim); - out_value->Resize(framework::make_ddim(in_dim_vec)); + out_value->Resize(framework::make_ddim(in_dim)); out_value->mutable_data(context.GetPlace()); math::SelectedRowsAddTo functor; int64_t offset = 0; for (int i = 0; i < N; i++) { - PADDLE_ENFORCE_EQ(out->height(), - in_vars[i]->Get().height()); - functor(context.template device_context(), - in_vars[i]->Get(), offset, out); - offset += in_vars[i]->Get().value().numel(); + auto &sel_row = get_selected_row(i); + + PADDLE_ENFORCE_EQ(out->height(), sel_row.height()); + functor(context.template device_context(), sel_row, + offset, out); + offset += sel_row.value().numel(); } } else if (out_var->IsType()) { auto &out_array = *out_var->GetMutable(); diff --git a/python/paddle/v2/fluid/tests/book/test_word2vec.py b/python/paddle/v2/fluid/tests/book/test_word2vec.py index cdfa910fcd3..cfa8d9580d7 100644 --- a/python/paddle/v2/fluid/tests/book/test_word2vec.py +++ b/python/paddle/v2/fluid/tests/book/test_word2vec.py @@ -15,9 +15,10 @@ import paddle.v2 as paddle import paddle.v2.fluid as fluid import unittest +import os -def main_impl(use_cuda): +def main(use_cuda, is_sparse, parallel): if use_cuda and not fluid.core.is_compiled_with_cuda(): return @@ -26,7 +27,45 @@ def main_impl(use_cuda): HIDDEN_SIZE = 256 N = 5 BATCH_SIZE = 32 - IS_SPARSE = True + IS_SPARSE = is_sparse + + def __network__(words): + embed_first = fluid.layers.embedding( + input=words[0], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_second = fluid.layers.embedding( + input=words[1], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_third = fluid.layers.embedding( + input=words[2], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_forth = fluid.layers.embedding( + input=words[3], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + + concat_embed = fluid.layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], axis=1) + hidden1 = fluid.layers.fc(input=concat_embed, + size=HIDDEN_SIZE, + act='sigmoid') + predict_word = fluid.layers.fc(input=hidden1, + size=dict_size, + act='softmax') + cost = fluid.layers.cross_entropy(input=predict_word, label=words[4]) + avg_cost = fluid.layers.mean(x=cost) + return avg_cost word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) @@ -37,39 +76,21 @@ def main_impl(use_cuda): forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') - embed_first = fluid.layers.embedding( - input=first_word, - size=[dict_size, EMBED_SIZE], - dtype='float32', - is_sparse=IS_SPARSE, - param_attr='shared_w') - embed_second = fluid.layers.embedding( - input=second_word, - size=[dict_size, EMBED_SIZE], - dtype='float32', - is_sparse=IS_SPARSE, - param_attr='shared_w') - embed_third = fluid.layers.embedding( - input=third_word, - size=[dict_size, EMBED_SIZE], - dtype='float32', - is_sparse=IS_SPARSE, - param_attr='shared_w') - embed_forth = fluid.layers.embedding( - input=forth_word, - size=[dict_size, EMBED_SIZE], - dtype='float32', - is_sparse=IS_SPARSE, - param_attr='shared_w') - - concat_embed = fluid.layers.concat( - input=[embed_first, embed_second, embed_third, embed_forth], axis=1) - hidden1 = fluid.layers.fc(input=concat_embed, - size=HIDDEN_SIZE, - act='sigmoid') - predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax') - cost = fluid.layers.cross_entropy(input=predict_word, label=next_word) - avg_cost = fluid.layers.mean(x=cost) + if not parallel: + avg_cost = __network__( + [first_word, second_word, third_word, forth_word, next_word]) + else: + places = fluid.layers.get_places() + pd = fluid.layers.ParallelDo(places) + with pd.do(): + avg_cost = __network__( + map(pd.read_input, [ + first_word, second_word, third_word, forth_word, next_word + ])) + pd.write_output(avg_cost) + + avg_cost = fluid.layers.mean(x=pd()) + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) @@ -94,22 +115,42 @@ def main_impl(use_cuda): raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0])) -def main(*args, **kwargs): - prog = fluid.Program() - startup_prog = fluid.Program() - scope = fluid.core.Scope() - with fluid.scope_guard(scope): - with fluid.program_guard(prog, startup_prog): - main_impl(*args, **kwargs) +FULL_TEST = os.getenv('FULL_TEST', + '1').lower() in ['true', '1', 't', 'y', 'yes', 'on'] +SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster" class W2VTest(unittest.TestCase): - def test_cpu_normal(self): - main(use_cuda=False) + pass + + +def inject_test_method(use_cuda, is_sparse, parallel): + fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse" + if is_sparse else "dense", "parallel" + if parallel else "normal") + + def __impl__(*args, **kwargs): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + main(use_cuda=use_cuda, is_sparse=is_sparse, parallel=parallel) + + if use_cuda and is_sparse and parallel: + fn = __impl__ + else: + # skip the other test when on CI server + fn = unittest.skipUnless( + condition=FULL_TEST, reason=SKIP_REASON)(__impl__) + + setattr(W2VTest, fn_name, fn) - def test_gpu_normal(self): - main(use_cuda=True) +for use_cuda in (False, True): + for is_sparse in (False, True): + for parallel in (False, True): + inject_test_method(use_cuda, is_sparse, parallel) if __name__ == '__main__': unittest.main() -- GitLab