未验证 提交 6fa29c55 编写于 作者: H HongyuJia 提交者: GitHub

[Polist Unittest] Polish test_phi_tensor (#50440)

* fix py::array_t calling bug

* polish test_phi_tensor

* stop fix inference bug in this PR

* polish unittest

* change int->int32_t

* fix unittest

* fix compile error

* modify cmake

* remove redundancy codes

* fix selectedRow unittest

* fix cmake relay

* declare kernel
上级 b5809912
set(COMMON_API_TEST_DEPS phi_tensor phi_api phi_api_utils)
if(WITH_GPU)
nv_test(
test_phi_tensor
SRCS test_phi_tensor.cc
DEPS phi_tensor glog selected_rows)
DEPS glog selected_rows ${COMMON_API_TEST_DEPS})
elseif(WITH_ROCM)
hip_test(
test_phi_tensor
SRCS test_phi_tensor.cc
DEPS phi_tensor glog selected_rows)
DEPS glog selected_rows ${COMMON_API_TEST_DEPS})
else()
cc_test(
test_phi_tensor
SRCS test_phi_tensor.cc
DEPS phi_tensor glog selected_rows)
DEPS glog selected_rows ${COMMON_API_TEST_DEPS})
endif()
cc_test(
......@@ -20,7 +22,6 @@ cc_test(
SRCS test_phi_exception.cc
DEPS gtest)
set(COMMON_API_TEST_DEPS phi_tensor phi_api phi_api_utils)
cc_test(
test_to_api
SRCS test_to_api.cc
......
......@@ -14,18 +14,30 @@
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/selected_rows.h"
PD_DECLARE_KERNEL(empty, CPU, ALL_LAYOUT);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(empty, GPU, ALL_LAYOUT);
#endif
namespace paddle {
namespace tests {
using Tensor = paddle::experimental::Tensor;
using DataType = paddle::experimental::DataType;
template <typename T>
experimental::Tensor InitCPUTensorForTest() {
Tensor InitCPUTensorForTest() {
std::vector<int64_t> tensor_shape{5, 5};
auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
auto* p_data_ptr = t1.mutable_data<T>(paddle::PlaceType::kCPU);
DataType dtype = paddle::experimental::CppTypeToDataType<T>::Type();
Tensor t1 = paddle::experimental::empty(tensor_shape, dtype, phi::CPUPlace());
auto* p_data_ptr = t1.data<T>();
for (int64_t i = 0; i < t1.size(); i++) {
p_data_ptr[i] = T(5);
}
......@@ -35,22 +47,22 @@ experimental::Tensor InitCPUTensorForTest() {
template <typename T>
void TestCopyTensor() {
auto t1 = InitCPUTensorForTest<T>();
auto t1_cpu_cp = t1.template copy_to<T>(paddle::PlaceType::kCPU);
CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place()));
auto t1_cpu_cp = t1.copy_to(phi::CPUPlace(), /*blocking=*/false);
CHECK((phi::CPUPlace() == t1_cpu_cp.place()));
for (int64_t i = 0; i < t1.size(); i++) {
CHECK_EQ(t1_cpu_cp.template mutable_data<T>()[i], T(5));
CHECK_EQ(t1_cpu_cp.template data<T>()[i], T(5));
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
VLOG(2) << "Do GPU copy test";
auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place()));
auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place()));
auto t1_gpu_cp = t1_cpu_cp.copy_to(phi::GPUPlace(), /*blocking=*/false);
CHECK((phi::GPUPlace() == t1_gpu_cp.place()));
auto t1_gpu_cp_cp = t1_gpu_cp.copy_to(phi::GPUPlace(), /*blocking=*/false);
CHECK((phi::GPUPlace() == t1_gpu_cp_cp.place()));
auto t1_gpu_cp_cp_cpu =
t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
t1_gpu_cp_cp.copy_to(phi::CPUPlace(), /*blocking=*/false);
CHECK((phi::CPUPlace() == t1_gpu_cp_cp_cpu.place()));
for (int64_t i = 0; i < t1.size(); i++) {
CHECK_EQ(t1_gpu_cp_cp_cpu.template mutable_data<T>()[i], T(5));
CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
}
#endif
}
......@@ -58,18 +70,18 @@ void TestCopyTensor() {
void TestAPIPlace() {
std::vector<int64_t> tensor_shape = {5, 5};
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape);
t1.mutable_data<float>(paddle::PlaceType::kGPU);
CHECK((paddle::PlaceType::kGPU == t1.place()));
auto t1 = paddle::experimental::empty(
tensor_shape, DataType::FLOAT32, phi::GPUPlace());
CHECK((phi::GPUPlace() == t1.place()));
#endif
auto t2 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
t2.mutable_data<float>(paddle::PlaceType::kCPU);
CHECK((paddle::PlaceType::kCPU == t2.place()));
auto t2 = paddle::experimental::empty(
tensor_shape, DataType::FLOAT32, phi::CPUPlace());
CHECK((phi::CPUPlace() == t2.place()));
}
void TestAPISizeAndShape() {
std::vector<int64_t> tensor_shape = {5, 5};
auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
auto t1 = paddle::experimental::empty(tensor_shape);
CHECK_EQ(t1.size(), 25);
CHECK(t1.shape() == tensor_shape);
}
......@@ -80,31 +92,30 @@ void TestAPISlice() {
std::vector<int64_t> tensor_shape_origin2 = {5, 5, 5};
std::vector<int64_t> tensor_shape_sub2 = {1, 5, 5};
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1);
t1.mutable_data<float>(paddle::PlaceType::kGPU);
auto t1 = paddle::experimental::empty(
tensor_shape_origin1, DataType::FLOAT32, phi::GPUPlace());
CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1);
CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1);
auto t2 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2);
t2.mutable_data<float>(paddle::PlaceType::kGPU);
auto t2 = paddle::experimental::empty(
tensor_shape_origin2, DataType::FLOAT32, phi::GPUPlace());
CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2);
#endif
auto t3 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1);
t3.mutable_data<float>(paddle::PlaceType::kCPU);
auto t3 = paddle::experimental::empty(
tensor_shape_origin1, DataType::FLOAT32, phi::CPUPlace());
CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1);
CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1);
auto t4 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2);
t4.mutable_data<float>(paddle::PlaceType::kCPU);
auto t4 = paddle::experimental::empty(
tensor_shape_origin2, DataType::FLOAT32, phi::CPUPlace());
CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2);
// Test writing function for sliced tensor
auto t = InitCPUTensorForTest<float>();
auto t_sliced = t.slice(0, 1);
auto* t_sliced_data_ptr =
t_sliced.mutable_data<float>(paddle::PlaceType::kCPU);
auto* t_sliced_data_ptr = t_sliced.data<float>();
for (int64_t i = 0; i < t_sliced.size(); i++) {
t_sliced_data_ptr[i] += static_cast<float>(5);
}
auto* t_data_ptr = t.mutable_data<float>(paddle::PlaceType::kCPU);
auto* t_data_ptr = t.data<float>();
for (int64_t i = 0; i < t_sliced.size(); i++) {
CHECK_EQ(t_data_ptr[i], static_cast<float>(10));
}
......@@ -113,22 +124,20 @@ void TestAPISlice() {
template <typename T>
paddle::DataType TestDtype() {
std::vector<int64_t> tensor_shape = {5, 5};
auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
t1.template mutable_data<T>(paddle::PlaceType::kCPU);
DataType dtype = paddle::experimental::CppTypeToDataType<T>::Type();
auto t1 = paddle::experimental::empty(tensor_shape, dtype, phi::CPUPlace());
return t1.type();
}
template <typename T>
void TestCast(paddle::DataType data_type) {
std::vector<int64_t> tensor_shape = {5, 5};
auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
t1.template mutable_data<T>(paddle::PlaceType::kCPU);
DataType dtype = paddle::experimental::CppTypeToDataType<T>::Type();
auto t1 = paddle::experimental::empty(tensor_shape, dtype, phi::CPUPlace());
auto t2 = t1.cast(data_type);
CHECK(t2.type() == data_type);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
auto tg1 = experimental::Tensor(paddle::PlaceType::kGPU);
tg1.reshape(tensor_shape);
tg1.template mutable_data<T>(paddle::PlaceType::kGPU);
auto tg1 = paddle::experimental::empty(tensor_shape, dtype, phi::GPUPlace());
auto tg2 = tg1.cast(data_type);
CHECK(tg2.type() == data_type);
#endif
......@@ -140,7 +149,7 @@ void GroupTestCopy() {
VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu";
TestCopyTensor<double>();
VLOG(2) << "int cpu-cpu-gpu-gpu-cpu";
TestCopyTensor<int>();
TestCopyTensor<int32_t>();
VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu";
TestCopyTensor<int64_t>();
VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu";
......@@ -158,8 +167,8 @@ void GroupTestCopy() {
}
void GroupTestCast() {
VLOG(2) << "int cast";
TestCast<int>(paddle::DataType::FLOAT32);
VLOG(2) << "int16_t cast";
TestCast<int16_t>(paddle::DataType::FLOAT32);
VLOG(2) << "int32 cast";
TestCast<int32_t>(paddle::DataType::FLOAT32);
VLOG(2) << "int64 cast";
......@@ -185,7 +194,6 @@ void GroupTestDtype() {
CHECK(TestDtype<int8_t>() == paddle::DataType::INT8);
CHECK(TestDtype<uint8_t>() == paddle::DataType::UINT8);
CHECK(TestDtype<int16_t>() == paddle::DataType::INT16);
CHECK(TestDtype<int>() == paddle::DataType::INT32);
CHECK(TestDtype<int32_t>() == paddle::DataType::INT32);
CHECK(TestDtype<int64_t>() == paddle::DataType::INT64);
CHECK(TestDtype<paddle::float16>() == paddle::DataType::FLOAT16);
......@@ -196,11 +204,9 @@ void GroupTestDtype() {
}
void TestInitilized() {
experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1});
CHECK(test_tensor.is_initialized() == true);
test_tensor.mutable_data<float>(paddle::PlaceType::kCPU);
auto test_tensor = paddle::experimental::empty({1, 1});
CHECK(test_tensor.is_initialized() == true);
float* tensor_data = test_tensor.mutable_data<float>();
float* tensor_data = test_tensor.data<float>();
for (int i = 0; i < test_tensor.size(); i++) {
tensor_data[i] = 0.5;
}
......@@ -211,7 +217,7 @@ void TestInitilized() {
void TestDataInterface() {
// Test DenseTensor
experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1});
auto test_tensor = paddle::experimental::empty({1, 1});
CHECK(test_tensor.is_initialized() == true);
void* tensor_ptr = test_tensor.data();
CHECK(tensor_ptr != nullptr);
......@@ -234,7 +240,7 @@ void TestDataInterface() {
}
void TestJudgeTensorType() {
experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1});
experimental::Tensor test_tensor(phi::CPUPlace(), {1, 1});
CHECK(test_tensor.is_dense_tensor() == true);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册