Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
58730ba1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
58730ba1
编写于
3月 16, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance unit test.
上级
bf3f56e8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
145 addition
and
101 deletion
+145
-101
paddle/fluid/operators/sequence_expand_op.cc
paddle/fluid/operators/sequence_expand_op.cc
+54
-48
paddle/fluid/operators/sequence_expand_op.h
paddle/fluid/operators/sequence_expand_op.h
+27
-13
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+26
-23
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+2
-2
python/paddle/fluid/tests/unittests/test_sequence_expand.py
python/paddle/fluid/tests/unittests/test_sequence_expand.py
+36
-15
未找到文件。
paddle/fluid/operators/sequence_expand_op.cc
浏览文件 @
58730ba1
...
...
@@ -33,10 +33,11 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"Output(Out) of SequenceExpandOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
out_dims
=
x_dims
;
int
ref_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"ref_level"
);
PADDLE_ENFORCE_
EQ
(
x_dims
.
size
(),
2U
,
"Dimension number of Input(X) should be 2."
);
PADDLE_ENFORCE_
GE
(
x_dims
.
size
(),
2
,
"Dimension number of Input(X) should be
at least
2."
);
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
x_var
=
...
...
@@ -50,15 +51,9 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LE
(
x_lod
.
size
(),
1
,
"Number of lod level of Input(X) should not be "
"greater than 1."
);
PADDLE_ENFORCE
(
x_lod
.
size
()
==
y_lod
.
size
()
||
x_lod
.
size
()
==
0
,
"Level number of Input(X)'s lod should be either equal "
"to 0 or equal to that of Input(Y)."
);
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of Input(Y)'s lod should be "
"greater than 0."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
static_cast
<
int
>
(
y_lod
.
size
())),
...
...
@@ -68,6 +63,14 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
if
(
x_lod
.
size
()
>
0
)
{
PADDLE_ENFORCE
(
x_lod
.
size
()
==
0
||
x_lod
[
0
].
size
()
==
y_lod
[
ref_level
].
size
(),
"Level number of Input(X)'s lod should be 0. Otherwise "
"size of Input(X)'s first level lod should be equal to "
"size of Input(Y)'s lod of referred level."
);
}
int64_t
out_first_dim
=
0
;
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
out_first_dim
=
x_dims
[
0
];
...
...
@@ -81,9 +84,12 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
}
ctx
->
SetOutputDim
(
"Out"
,
{
out_first_dim
,
x_dims
[
1
]});
out_dims
[
0
]
=
out_first_dim
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
,
x_dims
[
1
]});
out_dims
[
0
]
=
-
1
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
};
...
...
@@ -105,69 +111,69 @@ class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Sequence Expand Operator.
This operator expands input(X) according to LOD of input(Y).
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.
Following are cases to better explain how this works:
Case 1:
Given a 2-level LoDTensor input(X)
X.lod = [[0, 2, 3],
[0, 1, 3, 4]]
X.data = [a, b, c, d]
Given a 1-level LoDTensor input(X)
X.lod = [[0, 2, 4]]
X.data = [[a], [b], [c], [d]]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
Out.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
Out.data = [a, a, a, b, b, b, c, d]
ref_level: 0
then we get 1-level LoDTensor
Out.lod = [[0, 2, 4, 6, 8]]
Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
Out.dims = [8, 1]
Case 2:
Given 1-level LoDTensor input(X)
X.lod = [[0, 1, 4]]
X.data = [[a], [b], [c], [d]]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 2, 4],
[0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
Out.lod = [[0, 2, 5, 8]]
Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
Out.dims = [8, 1]
Case 3:
Given a common Tensor input(X)
X.data = [
a, b, c
]
X.data = [
[a], [b], [c]
]
X.dims = [3, 1]
and input(Y)
Y.lod = [[0, 2, 3, 6]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 1-level LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [a, a, b, c, c, c]
ref_level: -1
then we a common Tensor
Out.data = [[a], [a], [b], [c], [c], [c]]
Out.dims = [6, 1]
Case
3
:
Case
4
:
Given a common Tensor input(X)
X.data = [[a, b], [c, d], [e, f]]
X.dims = [3, 2]
and input(Y)
Y.lod = [[0, 2, 3, 6]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 1-level LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]]
ref_level: 0
then we get a common LoDTensor
Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
Out.dims = [6, 2]
Case 4:
Given 2-level a LoDTensor input(X)
X.lod = [[0, 2, 3],
[0, 1, 3, 4]]
X.data = [a, b, c, d]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 2, 4],
[0, 3, 6, 6, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
Out.lod = [[0, 2, 4],
[0, 3, 6, 6, 8]]
Out.data = [a, a, a, b, b, b, d, d]
Out.dims = [8, 1]
)DOC"
);
}
};
...
...
paddle/fluid/operators/sequence_expand_op.h
浏览文件 @
58730ba1
...
...
@@ -22,6 +22,9 @@ namespace paddle {
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceExpandKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -30,15 +33,12 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()
);
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of `Y`'s lod should be greater than 0."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
y_lod
.
size
()),
"Invlid `ref_level`, which should be either equal to -1 "
...
...
@@ -47,6 +47,8 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
x
,
context
.
GetPlace
(),
out
);
return
;
...
...
@@ -59,6 +61,8 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
}
int
out_offset
=
0
;
auto
&
eigen_place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_start
=
i
-
1
;
...
...
@@ -68,16 +72,24 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
x_sub_tensor
=
x
->
Slice
(
x_start
,
x_end
);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
if
(
repeat_num
>
0
)
{
auto
x_sub_tensor
=
x
->
Slice
(
x_start
,
x_end
);
x_sub_tensor
.
Resize
({
1
,
x_sub_tensor
.
numel
()});
int
out_start
=
out_offset
;
if
(
x_lod
.
size
()
==
1
)
{
out_start
=
out_lod
[
0
][
out_offset
];
out_lod
[
0
].
push_back
(
x_seq_len
);
}
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
x_seq_len
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
x_seq_len
*
repeat_num
);
out_sub_tensor
.
Resize
({
repeat_num
,
x_sub_tensor
.
dims
()[
1
]});
EigenMatrix
<
T
>::
From
(
out_sub_tensor
).
device
(
eigen_place
)
=
EigenMatrix
<
T
>::
From
(
x_sub_tensor
)
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({{
repeat_num
,
1
}}));
}
for
(
int
j
=
0
;
j
<
repeat_num
;
++
j
)
{
if
(
x_lod
.
size
()
==
1
)
{
out_lod
[
0
].
push_back
(
out_lod
[
0
].
back
()
+
x_seq_len
);
}
out_offset
++
;
}
}
...
...
@@ -122,6 +134,9 @@ class SequenceExpandGradKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
g_x
,
static_cast
<
T
>
(
0
));
int
g_out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
...
...
@@ -133,12 +148,11 @@ class SequenceExpandGradKernel : public framework::OpKernel<T> {
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
column
=
x_seq_len
*
x
->
dims
()[
1
];
auto
g_x_sub
=
g_x
->
Slice
(
x_start
,
x_end
);
g_x_sub
=
framework
::
ReshapeToMatrix
(
g_x_sub
,
column
);
g_x_sub
.
Resize
(
flatten_to_1d
(
g_x_sub
.
dims
())
);
int
g_out_end
=
g_out_offset
+
repeat_num
*
x_seq_len
;
auto
g_out_sub
=
g_out
->
Slice
(
g_out_offset
,
g_out_end
);
g_out_sub
=
framework
::
ReshapeToMatrix
(
g_out_sub
,
column
);
g_out_sub
.
Resize
({
repeat_num
,
g_x_sub
.
dims
()[
0
]}
);
math
::
ColwiseSum
<
DeviceContext
,
T
>
col_sum
;
col_sum
(
dev_ctx
,
g_out_sub
,
&
g_x_sub
);
g_out_offset
+=
repeat_num
*
x_seq_len
;
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
58730ba1
...
...
@@ -1781,52 +1781,52 @@ def conv2d_transpose(input,
return
out
def
sequence_expand
(
x
,
y
,
name
=
None
):
def
sequence_expand
(
x
,
y
,
ref_level
=-
1
,
name
=
None
):
"""Sequence Expand Layer. This layer will expand the input variable **x**
according to LoD information of **y**. And the following examples will
explain how sequence_expand works:
according to specified level lod of **y**. Please note that lod level of
**x** is at most 1 and rank of **x** is at least 2. When rank of **x**
is greater than 2, then it would be viewed as a 2-D tensor.
Following examples will explain how sequence_expand works:
.. code-block:: text
* Case 1
x is a LoDTensor:
x.lod = [[0, 2, 3],
[0, 1, 3, 4]]
x.data = [a, b, c, d]
x.lod = [[0, 2, 4]]
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
y is a LoDTensor:
y.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
with condition len(y.lod[-1]) - 1 == x.dims[0]
ref_level: 0
then output is a 2-level LoDTensor:
out.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
out.data = [a, a, a, b, b, b, c, d]
then output is a 1-level LoDTensor:
out.lod = [[0, 2, 4, 6, 8]]
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
* Case 2
x is a Tensor:
x.data = [
a, b, c
]
x.data = [
[a], [b], [c]
]
x.dims = [3, 1]
y is a LoDTensor:
y.lod = [[0, 2, 3, 6]]
with condition len(y.lod[-1]) - 1 == x.dims[0]
y.lod = [[0, 2, 2, 5]]
then output is a 1-level LoDTensor:
out.lod = [[0, 2, 3, 6]]
out.data = [a, a, b, c, c, c]
out.dims = [6, 1]
ref_level: -1
then output is a Tensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a LoDTensor.
ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
refer the last level of lod.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
Returns:
Variable: The expanded variable which is a LoDTensor.
...
...
@@ -1837,14 +1837,17 @@ def sequence_expand(x, y, name=None):
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y)
out = layers.sequence_expand(x=x, y=y
, ref_level=0
)
"""
helper
=
LayerHelper
(
'sequence_expand'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
tmp
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
'sequence_expand'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
tmp
})
type
=
'sequence_expand'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
tmp
},
attrs
=
{
'ref_level'
:
ref_level
})
return
tmp
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
58730ba1
...
...
@@ -181,8 +181,8 @@ class TestBook(unittest.TestCase):
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
10
,
20
],
dtype
=
'float32'
,
lod_level
=
1
)
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
))
name
=
'y'
,
shape
=
[
10
,
20
],
dtype
=
'float32'
,
lod_level
=
2
)
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
,
ref_level
=
1
))
print
(
str
(
program
))
def
test_lstm_unit
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_sequence_expand.py
浏览文件 @
58730ba1
...
...
@@ -27,12 +27,36 @@ class TestSequenceExpand(OpTest):
def
compute
(
self
):
x
=
self
.
inputs
[
'X'
]
x_data
,
x_lod
=
x
if
type
(
x
)
==
tuple
else
(
x
,
None
)
n
=
1
+
x_data
.
shape
[
0
]
if
not
x_lod
else
len
(
x_lod
[
0
])
y_data
,
y_lod
=
self
.
inputs
[
'Y'
]
repeats
=
[((
y_lod
[
-
1
][
i
+
1
]
-
y_lod
[
-
1
][
i
]))
for
i
in
range
(
len
(
y_lod
[
-
1
])
-
1
)]
out
=
x_data
.
repeat
(
repeats
,
axis
=
0
)
self
.
outputs
=
{
'Out'
:
out
}
if
hasattr
(
self
,
'attrs'
):
ref_level
=
self
.
attrs
[
'ref_level'
]
else
:
ref_level
=
len
(
y_lod
)
-
1
out
=
np
.
zeros
(
shape
=
((
0
,
)
+
x_data
.
shape
[
1
:]),
dtype
=
x_data
.
dtype
)
if
x_lod
is
None
:
x_idx
=
[
i
for
i
in
xrange
(
x_data
.
shape
[
0
]
+
1
)]
else
:
x_idx
=
x_lod
[
0
]
out_lod
=
[[
0
]]
for
i
in
xrange
(
1
,
len
(
y_lod
[
ref_level
])):
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
]
x_len
=
x_idx
[
i
]
-
x_idx
[
i
-
1
]
if
repeat_num
>
0
:
x_sub
=
x_data
[
x_idx
[
i
-
1
]:
x_idx
[
i
],
:]
x_sub
=
np
.
repeat
(
x_sub
,
repeat_num
,
axis
=
0
)
out
=
np
.
vstack
((
out
,
x_sub
))
if
x_lod
is
not
None
:
for
j
in
xrange
(
repeat_num
):
out_lod
[
0
].
append
(
out_lod
[
0
][
-
1
]
+
x_len
)
if
x_lod
is
None
:
self
.
outputs
=
{
'Out'
:
out
}
else
:
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
def
setUp
(
self
):
self
.
op_type
=
'sequence_expand'
...
...
@@ -52,7 +76,8 @@ class TestSequenceExpandCase1(TestSequenceExpand):
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
7
,
10
,
13
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
self
.
attrs
=
{
'ref_level'
:
0
}
class
TestSequenceExpandCase2
(
TestSequenceExpand
):
...
...
@@ -60,8 +85,9 @@ class TestSequenceExpandCase2(TestSequenceExpand):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
2
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
2
,
2
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
]]
y_lod
=
[[
0
,
2
]
,
[
0
,
2
]
]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
self
.
attrs
=
{
'ref_level'
:
0
}
class
TestSequenceExpandCase3
(
TestSequenceExpand
):
...
...
@@ -75,14 +101,9 @@ class TestSequenceExpandCase3(TestSequenceExpand):
class
TestSequenceExpandCase4
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
array
(
[
0.1
,
0.3
,
0.2
,
0.15
,
0.25
,
0.2
,
0.15
,
0.25
,
0.1
,
0.3
]).
reshape
(
[
2
,
5
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
,
2
,
]]
data
=
[
0.1
,
0.3
,
0.2
,
0.15
,
0.25
,
0.2
,
0.15
,
0.25
,
0.1
,
0.3
]
x_data
=
np
.
array
(
data
).
reshape
([
5
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
2
],
[
0
,
1
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录