Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bf3f56e8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf3f56e8
编写于
3月 15, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish adaption for backward.
上级
352fa41a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
108 addition
and
82 deletion
+108
-82
paddle/fluid/operators/math/math_function.cc
paddle/fluid/operators/math/math_function.cc
+2
-0
paddle/fluid/operators/math/math_function.cu
paddle/fluid/operators/math/math_function.cu
+2
-0
paddle/fluid/operators/sequence_expand_op.cc
paddle/fluid/operators/sequence_expand_op.cc
+25
-26
paddle/fluid/operators/sequence_expand_op.h
paddle/fluid/operators/sequence_expand_op.h
+79
-56
未找到文件。
paddle/fluid/operators/math/math_function.cc
浏览文件 @
bf3f56e8
...
...
@@ -371,6 +371,8 @@ template struct RowwiseAdd<platform::CPUDeviceContext, double>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
ColwiseSum
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
RowwiseSum
<
platform
::
CPUDeviceContext
,
double
>;
...
...
paddle/fluid/operators/math/math_function.cu
浏览文件 @
bf3f56e8
...
...
@@ -422,6 +422,8 @@ struct RowwiseAdd<platform::CUDADeviceContext, T> {
template
struct
RowwiseAdd
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
RowwiseAdd
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
ColwiseSum
<
platform
::
CUDADeviceContext
,
int64_t
>;
// template struct ColwiseSum<platform::CUDADeviceContext, double>;
// The ColwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
// and only failed for this case. So reimplemented it.
...
...
paddle/fluid/operators/sequence_expand_op.cc
浏览文件 @
bf3f56e8
...
...
@@ -33,9 +33,10 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"Output(Out) of SequenceExpandOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
int
ref_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"ref_level"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2U
,
"Dimension number of Input(X) should be 2."
);
int
ref_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"ref_level"
);
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
x_var
=
...
...
@@ -51,39 +52,37 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
"greater than 1."
);
PADDLE_ENFORCE
(
x_lod
.
size
()
==
y_lod
.
size
()
||
x_lod
.
size
()
==
0
,
"Number of lod level of Input(X) either equal to 0 "
"or equal to that of Input(Y)."
);
"Level number of Input(X)'s lod should be either equal "
"to 0 or equal to that of Input(Y)."
);
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of Input(Y)'s lod should be "
"greater than 0."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
static_cast
<
int
>
(
y_lod
.
size
())),
"Invlid `ref_level`, which should be either equal to -1 "
"or in [0, %d)"
,
y_lod
.
size
());
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
int64_t
out_first_dim
=
0
;
if
(
y_lod
[
ref_level
].
size
()
<
1
)
{
if
(
y_lod
[
ref_level
].
size
()
<
=
1
)
{
out_first_dim
=
x_dims
[
0
];
}
else
{
if
(
x_lod
.
size
()
==
1
)
{
// X is LoDTensor
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
out_first_dim
+=
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
}
else
{
// X is normal Tensor
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
out_first_dim
+=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
x_seq_len
=
1
;
if
(
x_lod
.
size
()
==
1
)
{
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
}
out_first_dim
+=
(
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
])
*
x_seq_len
;
}
}
ctx
->
SetOutputDim
(
"Out"
,
{
out_first_dim
,
x_dims
[
1
]});
}
else
{
framework
::
VarDesc
*
in_reader
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Y"
)[
0
]);
int
lod_level_num
=
in_reader
->
GetLoDLevels
().
size
();
PADDLE_ENFORCE_GE
(
ref_level
,
0
,
"Level of referred lod should be greater or "
"equal to 0."
);
PADDLE_ENFORCE_LT
(
ref_level
,
lod_level_num
,
"Level of referred lod should be smaller than "
"level number of Input(Y)."
);
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
,
x_dims
[
1
]});
}
}
...
...
@@ -102,7 +101,7 @@ class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
"generated from Input(X) by referring lod of Input(Y)."
);
AddAttr
<
int
>
(
"ref_level"
,
"Specify lod level of Input(Y)."
);
AddAttr
<
int
>
(
"ref_level"
,
"Specify lod level of Input(Y)."
)
.
SetDefault
(
-
1
)
;
AddComment
(
R"DOC(
Sequence Expand Operator.
...
...
paddle/fluid/operators/sequence_expand_op.h
浏览文件 @
bf3f56e8
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "
unsupported/Eigen/CXX11/Tensor
"
#include "
paddle/fluid/operators/math/math_function.h
"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,52 +32,53 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
PADDLE_ENFORCE_GE
(
ref_level
,
0
,
"Value of attribute `ref_level` should be greater or "
"equal to 0."
);
PADDLE_ENFORCE_GT
(
y_lod
.
size
(),
0
,
"Level number of `Y`'s lod should be greater than 0."
);
PADDLE_ENFORCE_LT
(
ref_level
,
y_lod
.
size
(),
"Value of attribute `ref_level` should be smaller than "
"level number of Y's lod."
);
PADDLE_ENFORCE
(
ref_level
==
-
1
||
(
ref_level
>=
0
&&
ref_level
<
y_lod
.
size
()),
"Invlid `ref_level`, which should be either equal to -1 "
"or in [0, %d)"
,
y_lod
.
size
());
if
(
y_lod
[
ref_level
].
size
()
<
1
)
{
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
x
,
context
.
GetPlace
(),
out
);
return
;
}
if
(
x_lod
.
size
()
==
0
)
{
int
out_start
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
auto
x_sub_tensor
=
x
->
Slice
(
i
-
1
,
i
);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
1
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_start
++
;
}
}
}
else
{
auto
&
out_lod
=
*
out
->
mutable_lod
();
auto
&
out_lod
=
*
out
->
mutable_lod
();
if
(
x_lod
.
size
()
==
1
)
{
out_lod
.
resize
(
1
);
out_lod
[
0
].
resize
(
1
);
out_lod
[
0
][
0
]
=
0
;
int
out_idx
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_seq_len
=
x_lod
[
0
][
i
]
-
x_lod
[
0
][
i
-
1
];
auto
x_sub_tensor
=
x
->
Slice
(
x_lod
[
0
][
i
],
x_lod
[
0
][
i
-
1
]);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
auto
out_sub_tensor
=
out
->
Slice
(
out_lod
[
0
][
out_idx
],
out_lod
[
0
][
out_idx
]
+
x_seq_len
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_lod
[
0
].
push_back
(
out_lod
[
0
][
out_idx
]
+
x_seq_len
);
out_idx
++
;
out_lod
[
0
]
=
{
0
};
}
int
out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
int
x_start
=
i
-
1
;
int
x_end
=
i
;
if
(
x_lod
.
size
()
==
1
)
{
x_start
=
x_lod
[
0
][
i
-
1
];
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
x_sub_tensor
=
x
->
Slice
(
x_start
,
x_end
);
for
(
size_t
j
=
0
;
j
<
repeat_num
;
++
j
)
{
int
out_start
=
out_offset
;
if
(
x_lod
.
size
()
==
1
)
{
out_start
=
out_lod
[
0
][
out_offset
];
out_lod
[
0
].
push_back
(
x_seq_len
);
}
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
x_seq_len
);
framework
::
TensorCopy
(
x_sub_tensor
,
context
.
GetPlace
(),
&
out_sub_tensor
);
out_offset
++
;
}
}
}
...
...
@@ -99,27 +100,49 @@ template <typename DeviceContext, typename T>
class
SequenceExpandGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d
_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
g
_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_last_level
=
out
->
lod
().
back
();
d_x
->
set_lod
(
x
->
lod
());
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
element_len
=
d_out
->
numel
()
/
d_out
->
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
out_last_level
.
size
()
-
1
;
++
i
)
{
size_t
repeat
=
out_last_level
[
i
+
1
]
-
out_last_level
[
i
];
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_out_t
(
d_out_data
,
static_cast
<
int
>
(
repeat
),
element_len
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_x_t
(
d_x_data
,
static_cast
<
int
>
(
element_len
));
auto
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
d_x_t
.
device
(
*
place
)
=
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_out_data
+=
(
repeat
*
element_len
);
d_x_data
+=
element_len
;
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
auto
*
g_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
int
ref_level
=
context
.
Attr
<
int
>
(
"ref_level"
);
g_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
g_x
->
set_lod
(
x
->
lod
());
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
// just copy the gradient
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
g_out
,
context
.
GetPlace
(),
g_x
);
return
;
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
g_out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
if
(
repeat_num
>
0
)
{
int
x_start
=
i
-
1
;
int
x_end
=
i
;
if
(
x_lod
.
size
()
==
1
)
{
x_start
=
x_lod
[
0
][
i
-
1
];
x_end
=
x_lod
[
0
][
i
];
}
int
x_seq_len
=
x_end
-
x_start
;
auto
column
=
x_seq_len
*
x
->
dims
()[
1
];
auto
g_x_sub
=
g_x
->
Slice
(
x_start
,
x_end
);
g_x_sub
=
framework
::
ReshapeToMatrix
(
g_x_sub
,
column
);
int
g_out_end
=
g_out_offset
+
repeat_num
*
x_seq_len
;
auto
g_out_sub
=
g_out
->
Slice
(
g_out_offset
,
g_out_end
);
g_out_sub
=
framework
::
ReshapeToMatrix
(
g_out_sub
,
column
);
math
::
ColwiseSum
<
DeviceContext
,
T
>
col_sum
;
col_sum
(
dev_ctx
,
g_out_sub
,
&
g_x_sub
);
g_out_offset
+=
repeat_num
*
x_seq_len
;
}
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录