Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
549855ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
549855ac
编写于
1月 19, 2021
作者:
Y
ykkk2333
提交者:
GitHub
1月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rmsprop_op_xpu test=kunlun (#30493)
* add rmsprop_op_xpu test=kunlun * modified rmsprop_op_xpu error code. test=kunlun
上级
fb20ec9a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
448 addition
and
0 deletion
+448
-0
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
+151
-0
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
+297
-0
未找到文件。
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
0 → 100644
浏览文件 @
549855ac
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/optimizers/rmsprop_op.h"
#include <gflags/gflags.h>
#include <iostream>
namespace
paddle
{
namespace
operators
{
static
inline
float
GetAttrFromTensor
(
const
framework
::
Tensor
*
tensor
)
{
const
float
*
tensor_data
=
tensor
->
data
<
float
>
();
framework
::
Tensor
cpu_tensor
;
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
tensor_data
=
cpu_tensor
.
data
<
float
>
();
}
return
tensor_data
[
0
];
}
using
framework
::
OpKernelType
;
using
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
RmspropOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
paddle
::
framework
::
LoDTensor
;
// check Param & Grad tensor type
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
// inputs
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Rmsprop"
);
auto
&
meanSquare
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
),
"Input"
,
"MeanSquare"
,
"Rmsprop"
);
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Rmsprop"
);
auto
&
mom
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment"
),
"Input"
,
"Moment"
,
"Rmsprop"
);
auto
*
learning_rate
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
learning_rate
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] "
,
learning_rate
->
dims
().
size
()));
T
lr
=
static_cast
<
T
>
(
GetAttrFromTensor
(
learning_rate
));
// constants
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
decay
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
T
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
// outputs
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Rmsprop"
);
auto
&
mom_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
),
"Output"
,
"MomentOut"
,
"Rmsprop"
);
auto
&
mom_sqrt_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
),
"Output"
,
"MeanSquareOut"
,
"Rmsprop"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
///// rmsprop优化算法
///
/// ms_out[i] = rho * ms[i] + (1 - rho) * (g[i] * g[i]);
///
/// mom_out[i] = momentum * mom[i] + lr *
/// (g[i] / ((float)sqrt(ms_out[i] + epsilon)));
///
/// p_out[i] = p[i] - mom_out[i];
/// DLL_EXPORT int rmsprop(Context* ctx, const float* p,
/// const float* ms, const float* g, const float* mom,
/// float epsilon, float rho, float momentum, float lr,
/// float *ms_out, float *mom_out, float *p_out, int n)
int
r
=
xpu
::
rmsprop
(
dev_ctx
.
x_context
(),
param
.
template
data
<
T
>(),
meanSquare
.
template
data
<
T
>(),
grad
.
template
data
<
T
>(),
mom
.
template
data
<
T
>(),
epsilon
,
decay
,
momentum
,
lr
,
mom_sqrt_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param
.
numel
());
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of RmspropOp, error message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of RmspropOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of RmspropOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."
));
}
else
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of RmspropOp, error "
"message: OTHER "
"XPU API returns error code: %d."
,
r
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
rmsprop
,
ops
::
RmspropOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
0 → 100644
浏览文件 @
549855ac
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
import
paddle
'''
def create_selected_rows_and_tensor(scope, place, height, row_num,
embedding_size):
sr = scope.var("@selected_rows@").get_selected_rows()
tensor = scope.var("grad").get_tensor()
rows = np.random.random_integers(
low=0, high=height - 1, size=[row_num, ]).astype('int64')
sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')
sr.set_height(height)
sr.set_rows(rows)
sr.get_tensor().set(sr_val, place)
tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
for i in range(row_num):
row = rows[i]
tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]
tensor.set(tensor_val, place)
return tensor_val, sr_val
'''
class
TestBase
(
XPUOpTest
):
op_type
=
"rmsprop"
def
setup
(
self
,
place
,
is_sparse
,
centered
,
size
,
row_num
=
None
,
epsilon
=
1e-6
):
np
.
random
.
seed
(
5
)
# fix seed
self
.
scope
=
fluid
.
global_scope
()
self
.
place
=
place
self
.
param_name
=
"param"
self
.
param
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
mean_square_name
=
"mean_square"
self
.
mean_square
=
np
.
random
.
uniform
(
low
=
1
,
high
=
2
,
size
=
size
).
astype
(
"float32"
)
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
lr_name
=
"lr"
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
grad_name
=
"grad"
self
.
is_sparse
=
is_sparse
self
.
grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
grad_tensor
=
self
.
scope
.
var
(
self
.
grad_name
).
get_tensor
()
grad_tensor
.
set
(
self
.
grad
,
place
)
self
.
moment_name
=
"moment"
self
.
moment
=
np
.
random
.
uniform
(
low
=
0
,
high
=
1
,
size
=
size
).
astype
(
"float32"
)
self
.
epsilon
=
epsilon
self
.
decay
=
0.9
self
.
momentum
=
0.1
self
.
centered
=
centered
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
)
*
self
.
grad
*
self
.
grad
if
centered
:
self
.
mg_out
=
self
.
decay
*
self
.
mean_grad
+
(
1
-
self
.
decay
)
*
self
.
grad
self
.
moment_out
=
self
.
momentum
*
self
.
moment
+
\
self
.
learning_rate
*
self
.
grad
/
np
.
sqrt
(
self
.
ms_out
-
np
.
square
(
self
.
mg_out
)
+
self
.
epsilon
)
else
:
self
.
moment_out
=
self
.
momentum
*
self
.
moment
+
\
self
.
learning_rate
*
self
.
grad
/
np
.
sqrt
(
self
.
ms_out
+
self
.
epsilon
)
self
.
param_out
=
self
.
param
-
self
.
moment_out
# create and initialize Param Variable
self
.
param_tensor
=
self
.
scope
.
var
(
self
.
param_name
).
get_tensor
()
self
.
param_tensor
.
set
(
self
.
param
,
place
)
self
.
mean_square_tensor
=
self
.
scope
.
var
(
self
.
mean_square_name
).
get_tensor
()
self
.
mean_square_tensor
.
set
(
self
.
mean_square
,
place
)
lr
=
self
.
scope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
.
set
(
self
.
learning_rate
,
place
)
self
.
moment_tensor
=
self
.
scope
.
var
(
self
.
moment_name
).
get_tensor
()
self
.
moment_tensor
.
set
(
self
.
moment
,
place
)
if
self
.
centered
:
self
.
mean_grad_tensor
=
self
.
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
self
.
mean_grad_tensor
.
set
(
self
.
mean_grad
,
place
)
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
class
TestRmspropOp
(
TestBase
):
def
check_with_place
(
self
,
place
,
is_sparse
,
centered
,
size
,
row_num
=
None
,
epsilon
=
1e-6
):
self
.
setup
(
place
,
is_sparse
,
centered
,
size
,
row_num
,
epsilon
)
self
.
run_and_check
()
def
run_and_check
(
self
):
#grad_name = self.grad_sr_name if self.is_sparse else self.grad_name
grad_name
=
self
.
grad_name
kwargs
=
{
'Param'
:
self
.
param_name
,
'Grad'
:
grad_name
,
'MeanSquare'
:
self
.
mean_square_name
,
'Moment'
:
self
.
moment_name
,
'LearningRate'
:
self
.
lr_name
,
'ParamOut'
:
self
.
param_name
,
'MeanSquareOut'
:
self
.
mean_square_name
,
'MomentOut'
:
self
.
moment_name
,
'epsilon'
:
self
.
epsilon
,
'decay'
:
self
.
decay
,
'momentum'
:
self
.
momentum
,
'centered'
:
self
.
centered
}
if
self
.
centered
:
kwargs
[
'MeanGrad'
]
=
self
.
mean_grad_name
kwargs
[
'MeanGradOut'
]
=
self
.
mean_grad_name
rmsprop_op
=
Operator
(
'rmsprop'
,
**
kwargs
)
atol
=
1e-6
rmsprop_op
.
run
(
self
.
scope
,
self
.
place
)
self
.
check
(
np
.
array
(
self
.
mean_square_tensor
),
self
.
ms_out
,
self
.
place
,
self
.
mean_square_name
,
atol
=
atol
)
self
.
check
(
np
.
array
(
self
.
moment_tensor
),
self
.
moment_out
,
self
.
place
,
self
.
moment_name
,
atol
=
atol
)
self
.
check
(
np
.
array
(
self
.
param_tensor
),
self
.
param_out
,
self
.
place
,
self
.
param_name
,
atol
=
atol
)
if
self
.
centered
:
self
.
check
(
np
.
array
(
self
.
mean_grad_tensor
),
self
.
mg_out
,
self
.
place
,
self
.
mean_grad_name
)
def
test_rmsprop
(
self
):
places
=
[
paddle
.
XPUPlace
(
0
)]
size
=
(
128
,
320
)
for
place
in
places
:
for
centered
in
[
False
]:
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
False
,
centered
=
centered
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
512
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
60
,
size
=
size
,
)
class
TestRMSPropV2
(
XPUOpTest
):
op_type
=
"rmsprop"
def
test_rmsprop_dygraph
(
self
):
paddle
.
disable_static
()
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
to_tensor
(
value
)
linear
=
paddle
.
nn
.
Linear
(
13
,
5
)
# This can be any optimizer supported by dygraph.
adam
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
0.01
,
parameters
=
linear
.
parameters
(),
weight_decay
=
0.01
)
out
=
linear
(
a
)
out
.
backward
()
adam
.
step
()
adam
.
clear_gradients
()
def
test_rmsprop
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
paddle
.
enable_static
()
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
rms_optimizer
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
)
rms_optimizer
.
minimize
(
avg_cost
)
fetch_list
=
[
avg_cost
]
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
train
(),
batch_size
=
1
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
x
,
y
])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
data
in
train_reader
():
exe
.
run
(
main
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_list
)
def
test_raise_error
(
self
):
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
RMSProp
,
None
)
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
RMSProp
,
learning_rate
=
0.1
,
rho
=
None
)
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
RMSProp
,
learning_rate
=
0.1
,
epsilon
=
None
)
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
RMSProp
,
learning_rate
=
0.1
,
momentum
=
None
)
def
test_rmsprop_op_invalid_input
(
self
):
paddle
.
disable_static
()
linear
=
paddle
.
nn
.
Linear
(
10
,
10
)
with
self
.
assertRaises
(
ValueError
):
adam
=
paddle
.
optimizer
.
RMSProp
(
0.1
,
epsilon
=-
1
,
parameters
=
linear
.
parameters
())
with
self
.
assertRaises
(
ValueError
):
adam
=
paddle
.
optimizer
.
RMSProp
(
0.1
,
momentum
=-
1
,
parameters
=
linear
.
parameters
())
with
self
.
assertRaises
(
ValueError
):
adam
=
paddle
.
optimizer
.
RMSProp
(
0.1
,
rho
=-
1
,
parameters
=
linear
.
parameters
())
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录