Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
518f9d81
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
518f9d81
编写于
12月 02, 2022
作者:
C
cyber-pioneer
提交者:
GitHub
12月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move fluid.layer.py_func to paddle.static.nn.common.py_func (#48482)
上级
c34812ac
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
335 addition
and
332 deletion
+335
-332
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-322
python/paddle/fluid/tests/unittests/test_py_func_op.py
python/paddle/fluid/tests/unittests/test_py_func_op.py
+6
-6
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
+1
-1
python/paddle/static/__init__.py
python/paddle/static/__init__.py
+3
-2
python/paddle/static/nn/__init__.py
python/paddle/static/nn/__init__.py
+1
-1
python/paddle/static/nn/common.py
python/paddle/static/nn/common.py
+324
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
518f9d81
...
...
@@ -113,7 +113,6 @@ __all__ = [
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
'temporal_shift'
,
'py_func'
,
'continuous_value_model'
,
'unfold'
,
'deformable_roi_pooling'
,
...
...
@@ -6635,327 +6634,6 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
)
class
PyFuncRegistry
:
_register_funcs
=
[]
def
__init__
(
self
,
func
):
if
func
is
None
or
not
callable
(
func
):
raise
TypeError
(
'func must be a Python function'
)
self
.
_func
=
func
# find named args using reflection
args
=
inspect
.
getfullargspec
(
self
.
_func
)
if
len
(
args
[
0
])
==
0
and
args
[
1
]
is
None
and
args
[
2
]
is
None
:
# Function with no inputs
self
.
_named_args
=
None
else
:
self
.
_named_args
=
args
[
0
]
self
.
_id
=
core
.
_append_python_callable_object_and_return_id
(
self
)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry
.
_register_funcs
.
append
(
self
)
@
classmethod
def
registered_func
(
cls
,
idx
):
return
cls
.
_register_funcs
[
idx
].
_func
@
classmethod
def
registered_func_num
(
cls
):
return
len
(
cls
.
_register_funcs
)
@
property
def
id
(
self
):
return
self
.
_id
def
__call__
(
self
,
*
args
):
if
self
.
_named_args
is
None
:
func_ret
=
self
.
_func
()
else
:
kwargs
=
dict
()
idx
=
0
for
arg
in
self
.
_named_args
:
kwargs
[
arg
]
=
args
[
idx
]
idx
+=
1
func_ret
=
self
.
_func
(
*
args
[
idx
:],
**
kwargs
)
if
not
isinstance
(
func_ret
,
(
list
,
tuple
)):
func_ret
=
(
func_ret
,)
ret
=
[]
for
each_ret
in
func_ret
:
if
each_ret
is
None
or
isinstance
(
each_ret
,
core
.
LoDTensor
):
ret
.
append
(
each_ret
)
continue
if
not
isinstance
(
each_ret
,
np
.
ndarray
):
each_ret
=
np
.
array
(
each_ret
)
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
each_ret
,
core
.
CPUPlace
())
ret
.
append
(
tensor
)
return
tuple
(
ret
)
@
static_only
@
templatedoc
()
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
:api_attr: Static Graph
This OP is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
check_type
(
x
,
'X'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
x
is
None
:
x
=
[]
elif
isinstance
(
x
,
Variable
):
x
=
[
x
]
elif
isinstance
(
x
,
tuple
):
x
=
list
(
x
)
elif
not
isinstance
(
x
,
(
list
,
tuple
,
Variable
)):
raise
TypeError
(
'Input must be Variable/list(Variable)/tuple(Variable)'
)
check_type
(
out
,
'Out'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
out
is
None
:
out_list
=
[]
elif
isinstance
(
out
,
Variable
):
out_list
=
[
out
]
elif
isinstance
(
out
,
tuple
):
out_list
=
list
(
out
)
elif
isinstance
(
out
,
list
):
out_list
=
out
else
:
raise
TypeError
(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id
=
PyFuncRegistry
(
func
).
id
bwd_func_id
=
(
PyFuncRegistry
(
backward_func
).
id
if
backward_func
is
not
None
else
-
1
)
for
each_out
in
out_list
:
if
len
(
each_out
.
shape
)
==
0
:
raise
ValueError
(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars
=
set
()
if
backward_func
is
not
None
and
skip_vars_in_backward_input
is
not
None
:
if
isinstance
(
skip_vars_in_backward_input
,
Variable
):
skip_vars_in_backward_input
=
[
skip_vars_in_backward_input
]
fwd_in_out
=
[
v
.
name
for
v
in
x
]
fwd_in_out
.
extend
([
v
.
name
for
v
in
out_list
])
fwd_in_out
=
set
(
fwd_in_out
)
backward_skip_vars
=
set
()
for
v
in
skip_vars_in_backward_input
:
if
not
v
.
name
in
fwd_in_out
:
raise
ValueError
(
'Variable {} is not found in forward inputs and outputs'
.
format
(
v
.
name
)
)
backward_skip_vars
.
add
(
v
.
name
)
helper
.
append_op
(
type
=
'py_func'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out_list
},
attrs
=
{
'forward_callable_id'
:
fwd_func_id
,
'backward_callable_id'
:
bwd_func_id
,
'backward_skip_vars'
:
list
(
backward_skip_vars
),
},
)
return
out
# For debug usage
py_func
.
registered_func
=
PyFuncRegistry
.
registered_func
py_func
.
registered_func_num
=
PyFuncRegistry
.
registered_func_num
def
continuous_value_model
(
input
,
cvm
,
use_cvm
=
True
):
r
"""
...
...
python/paddle/fluid/tests/unittests/test_py_func_op.py
浏览文件 @
518f9d81
...
...
@@ -94,7 +94,7 @@ def simple_fc_net(img, label, use_py_func_op):
shape
=
hidden
.
shape
,
)
)
hidden
=
fluid
.
layers
.
py_func
(
hidden
=
paddle
.
static
.
py_func
(
func
=
tanh
,
x
=
hidden
,
out
=
new_hidden
,
...
...
@@ -111,7 +111,7 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
name
=
'loss'
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
])
)
loss
=
fluid
.
layers
.
py_func
(
loss
=
paddle
.
static
.
py_func
(
func
=
cross_entropy
,
x
=
[
prediction
,
label
],
out
=
loss
,
...
...
@@ -124,11 +124,11 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
name
=
'test_tmp_var'
,
dtype
=
'float32'
,
shape
=
[
1
])
)
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_no_input
,
x
=
None
,
out
=
dummy_var
)
loss
+=
dummy_var
fluid
.
layers
.
py_func
(
func
=
dummy_func_with_no_output
,
x
=
loss
,
out
=
None
)
paddle
.
static
.
py_func
(
func
=
dummy_func_with_no_output
,
x
=
loss
,
out
=
None
)
loss_out
=
(
fluid
.
default_main_program
()
...
...
@@ -140,7 +140,7 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
dtype
=
'float32'
,
shape
=
[
1
])
)
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_multi_input_output
,
x
=
(
loss
,
dummy_var
),
out
=
(
loss_out
,
dummy_var_out
),
...
...
@@ -149,7 +149,7 @@ def simple_fc_net(img, label, use_py_func_op):
loss
==
loss_out
and
dummy_var
==
dummy_var_out
),
"py_func failed with multi input and output"
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_multi_input_output
,
x
=
[
loss
,
dummy_var
],
out
=
[
loss_out
,
dummy_var_out
],
...
...
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
浏览文件 @
518f9d81
...
...
@@ -309,7 +309,7 @@ class PolicyGradient:
"""
update policy model self.model with policy gradient algorithm
"""
self
.
reward
=
fluid
.
layers
.
py_func
(
self
.
reward
=
paddle
.
static
.
py_func
(
func
=
reward_func
,
x
=
[
action
,
length
],
out
=
reward
)
neg_log_prob
=
layers
.
cross_entropy
(
act_prob
,
action
)
...
...
python/paddle/static/__init__.py
浏览文件 @
518f9d81
...
...
@@ -16,6 +16,9 @@
from
.
import
amp
# noqa: F401
from
.
import
sparsity
# noqa: F401
from
.
import
nn
# noqa: F401
from
.nn.common
import
py_func
# noqa: F401
from
.io
import
save_inference_model
# noqa: F401
from
.io
import
load_inference_model
# noqa: F401
from
.io
import
deserialize_persistables
# noqa: F401
...
...
@@ -53,7 +56,6 @@ from ..fluid.framework import Variable # noqa: F401
from
..fluid.framework
import
ipu_shard_guard
# noqa: F401
from
..fluid.framework
import
set_ipu_shard
# noqa: F401
from
..fluid.layers.control_flow
import
Print
# noqa: F401
from
..fluid.layers.nn
import
py_func
# noqa: F401
from
..fluid.parallel_executor
import
ParallelExecutor
# noqa: F401
from
..fluid.param_attr
import
WeightNormParamAttr
# noqa: F401
from
..fluid.optimizer
import
ExponentialMovingAverage
# noqa: F401
...
...
@@ -61,7 +63,6 @@ from ..fluid.io import save # noqa: F401
from
..fluid.io
import
load
# noqa: F401
from
..fluid.io
import
load_program_state
# noqa: F401
from
..fluid.io
import
set_program_state
# noqa: F401
from
..fluid.io
import
load_vars
# noqa: F401
from
..fluid.io
import
save_vars
# noqa: F401
from
..fluid.io
import
batch
# noqa: F401
...
...
python/paddle/static/nn/__init__.py
浏览文件 @
518f9d81
...
...
@@ -20,6 +20,7 @@ from .common import deform_conv2d # noqa: F401
from
.common
import
conv3d
# noqa: F401
from
.common
import
conv2d_transpose
# noqa: F401
from
.common
import
conv3d_transpose
# noqa: F401
from
.common
import
py_func
# noqa: F401
from
...fluid.layers
import
batch_norm
# noqa: F401
from
...fluid.layers
import
bilinear_tensor_product
# noqa: F401
...
...
@@ -32,7 +33,6 @@ from ...fluid.layers import layer_norm # noqa: F401
from
...fluid.layers
import
multi_box_head
# noqa: F401
from
.loss
import
nce
# noqa: F401
from
.common
import
prelu
# noqa: F401
from
...fluid.layers
import
py_func
# noqa: F401
from
...fluid.layers
import
row_conv
# noqa: F401
from
...fluid.layers
import
spectral_norm
# noqa: F401
from
...fluid.layers
import
switch_case
# noqa: F401
...
...
python/paddle/static/nn/common.py
浏览文件 @
518f9d81
...
...
@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
inspect
import
numpy
as
np
import
paddle
from
paddle.common_ops_import
import
(
LayerHelper
,
...
...
@@ -19,6 +23,7 @@ from paddle.common_ops_import import (
check_variable_and_dtype
,
utils
,
)
from
paddle.fluid
import
core
from
paddle.fluid.data_feeder
import
check_dtype
from
paddle.fluid.framework
import
Variable
,
_non_static_mode
,
static_only
from
paddle.fluid.initializer
import
Constant
,
Normal
...
...
@@ -2083,6 +2088,325 @@ def deform_conv2d(
)
class
PyFuncRegistry
:
_register_funcs
=
[]
def
__init__
(
self
,
func
):
if
func
is
None
or
not
callable
(
func
):
raise
TypeError
(
'func must be a Python function'
)
self
.
_func
=
func
# find named args using reflection
args
=
inspect
.
getfullargspec
(
self
.
_func
)
if
len
(
args
[
0
])
==
0
and
args
[
1
]
is
None
and
args
[
2
]
is
None
:
# Function with no inputs
self
.
_named_args
=
None
else
:
self
.
_named_args
=
args
[
0
]
self
.
_id
=
core
.
_append_python_callable_object_and_return_id
(
self
)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry
.
_register_funcs
.
append
(
self
)
@
classmethod
def
registered_func
(
cls
,
idx
):
return
cls
.
_register_funcs
[
idx
].
_func
@
classmethod
def
registered_func_num
(
cls
):
return
len
(
cls
.
_register_funcs
)
@
property
def
id
(
self
):
return
self
.
_id
def
__call__
(
self
,
*
args
):
if
self
.
_named_args
is
None
:
func_ret
=
self
.
_func
()
else
:
kwargs
=
dict
()
idx
=
0
for
arg
in
self
.
_named_args
:
kwargs
[
arg
]
=
args
[
idx
]
idx
+=
1
func_ret
=
self
.
_func
(
*
args
[
idx
:],
**
kwargs
)
if
not
isinstance
(
func_ret
,
(
list
,
tuple
)):
func_ret
=
(
func_ret
,)
ret
=
[]
for
each_ret
in
func_ret
:
if
each_ret
is
None
or
isinstance
(
each_ret
,
core
.
LoDTensor
):
ret
.
append
(
each_ret
)
continue
if
not
isinstance
(
each_ret
,
np
.
ndarray
):
each_ret
=
np
.
array
(
each_ret
)
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
each_ret
,
core
.
CPUPlace
())
ret
.
append
(
tensor
)
return
tuple
(
ret
)
@
static_only
@
templatedoc
()
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
This is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
check_type
(
x
,
'X'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
x
is
None
:
x
=
[]
elif
isinstance
(
x
,
Variable
):
x
=
[
x
]
elif
isinstance
(
x
,
tuple
):
x
=
list
(
x
)
elif
not
isinstance
(
x
,
(
list
,
tuple
,
Variable
)):
raise
TypeError
(
'Input must be Variable/list(Variable)/tuple(Variable)'
)
check_type
(
out
,
'Out'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
out
is
None
:
out_list
=
[]
elif
isinstance
(
out
,
Variable
):
out_list
=
[
out
]
elif
isinstance
(
out
,
tuple
):
out_list
=
list
(
out
)
elif
isinstance
(
out
,
list
):
out_list
=
out
else
:
raise
TypeError
(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id
=
PyFuncRegistry
(
func
).
id
bwd_func_id
=
(
PyFuncRegistry
(
backward_func
).
id
if
backward_func
is
not
None
else
-
1
)
for
each_out
in
out_list
:
if
len
(
each_out
.
shape
)
==
0
:
raise
ValueError
(
'Output shapes of py_func should be provided by users manually'
)
backward_skip_vars
=
set
()
if
backward_func
is
not
None
and
skip_vars_in_backward_input
is
not
None
:
if
isinstance
(
skip_vars_in_backward_input
,
Variable
):
skip_vars_in_backward_input
=
[
skip_vars_in_backward_input
]
fwd_in_out
=
[
v
.
name
for
v
in
x
]
fwd_in_out
.
extend
([
v
.
name
for
v
in
out_list
])
fwd_in_out
=
set
(
fwd_in_out
)
backward_skip_vars
=
set
()
for
v
in
skip_vars_in_backward_input
:
if
v
.
name
not
in
fwd_in_out
:
raise
ValueError
(
'Variable {} is not found in forward inputs and outputs'
.
format
(
v
.
name
)
)
backward_skip_vars
.
add
(
v
.
name
)
helper
.
append_op
(
type
=
'py_func'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out_list
},
attrs
=
{
'forward_callable_id'
:
fwd_func_id
,
'backward_callable_id'
:
bwd_func_id
,
'backward_skip_vars'
:
list
(
backward_skip_vars
),
},
)
return
out
# For debug usage
py_func
.
registered_func
=
PyFuncRegistry
.
registered_func
py_func
.
registered_func_num
=
PyFuncRegistry
.
registered_func_num
@
static_only
def
prelu
(
x
,
mode
,
param_attr
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
r
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录