未验证 提交 518f9d81 编写于 作者: C cyber-pioneer 提交者: GitHub

move fluid.layer.py_func to paddle.static.nn.common.py_func (#48482)

上级 c34812ac
......@@ -113,7 +113,6 @@ __all__ = [
'merge_selected_rows',
'get_tensor_from_selected_rows',
'temporal_shift',
'py_func',
'continuous_value_model',
'unfold',
'deformable_roi_pooling',
......@@ -6635,327 +6634,6 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
)
class PyFuncRegistry:
_register_funcs = []
def __init__(self, func):
if func is None or not callable(func):
raise TypeError('func must be a Python function')
self._func = func
# find named args using reflection
args = inspect.getfullargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs
self._named_args = None
else:
self._named_args = args[0]
self._id = core._append_python_callable_object_and_return_id(self)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry._register_funcs.append(self)
@classmethod
def registered_func(cls, idx):
return cls._register_funcs[idx]._func
@classmethod
def registered_func_num(cls):
return len(cls._register_funcs)
@property
def id(self):
return self._id
def __call__(self, *args):
if self._named_args is None:
func_ret = self._func()
else:
kwargs = dict()
idx = 0
for arg in self._named_args:
kwargs[arg] = args[idx]
idx += 1
func_ret = self._func(*args[idx:], **kwargs)
if not isinstance(func_ret, (list, tuple)):
func_ret = (func_ret,)
ret = []
for each_ret in func_ret:
if each_ret is None or isinstance(each_ret, core.LoDTensor):
ret.append(each_ret)
continue
if not isinstance(each_ret, np.ndarray):
each_ret = np.array(each_ret)
tensor = core.LoDTensor()
tensor.set(each_ret, core.CPUPlace())
ret.append(tensor)
return tuple(ret)
@static_only
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
:api_attr: Static Graph
This OP is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper = LayerHelper('py_func', **locals())
check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
if x is None:
x = []
elif isinstance(x, Variable):
x = [x]
elif isinstance(x, tuple):
x = list(x)
elif not isinstance(x, (list, tuple, Variable)):
raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
if out is None:
out_list = []
elif isinstance(out, Variable):
out_list = [out]
elif isinstance(out, tuple):
out_list = list(out)
elif isinstance(out, list):
out_list = out
else:
raise TypeError(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id = PyFuncRegistry(func).id
bwd_func_id = (
PyFuncRegistry(backward_func).id if backward_func is not None else -1
)
for each_out in out_list:
if len(each_out.shape) == 0:
raise ValueError(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars = set()
if backward_func is not None and skip_vars_in_backward_input is not None:
if isinstance(skip_vars_in_backward_input, Variable):
skip_vars_in_backward_input = [skip_vars_in_backward_input]
fwd_in_out = [v.name for v in x]
fwd_in_out.extend([v.name for v in out_list])
fwd_in_out = set(fwd_in_out)
backward_skip_vars = set()
for v in skip_vars_in_backward_input:
if not v.name in fwd_in_out:
raise ValueError(
'Variable {} is not found in forward inputs and outputs'.format(
v.name
)
)
backward_skip_vars.add(v.name)
helper.append_op(
type='py_func',
inputs={'X': x},
outputs={'Out': out_list},
attrs={
'forward_callable_id': fwd_func_id,
'backward_callable_id': bwd_func_id,
'backward_skip_vars': list(backward_skip_vars),
},
)
return out
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
def continuous_value_model(input, cvm, use_cvm=True):
r"""
......
......@@ -94,7 +94,7 @@ def simple_fc_net(img, label, use_py_func_op):
shape=hidden.shape,
)
)
hidden = fluid.layers.py_func(
hidden = paddle.static.py_func(
func=tanh,
x=hidden,
out=new_hidden,
......@@ -111,7 +111,7 @@ def simple_fc_net(img, label, use_py_func_op):
.current_block()
.create_var(name='loss', dtype='float32', shape=[-1, 1])
)
loss = fluid.layers.py_func(
loss = paddle.static.py_func(
func=cross_entropy,
x=[prediction, label],
out=loss,
......@@ -124,11 +124,11 @@ def simple_fc_net(img, label, use_py_func_op):
.current_block()
.create_var(name='test_tmp_var', dtype='float32', shape=[1])
)
fluid.layers.py_func(
paddle.static.py_func(
func=dummy_func_with_no_input, x=None, out=dummy_var
)
loss += dummy_var
fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)
paddle.static.py_func(func=dummy_func_with_no_output, x=loss, out=None)
loss_out = (
fluid.default_main_program()
......@@ -140,7 +140,7 @@ def simple_fc_net(img, label, use_py_func_op):
.current_block()
.create_var(dtype='float32', shape=[1])
)
fluid.layers.py_func(
paddle.static.py_func(
func=dummy_func_with_multi_input_output,
x=(loss, dummy_var),
out=(loss_out, dummy_var_out),
......@@ -149,7 +149,7 @@ def simple_fc_net(img, label, use_py_func_op):
loss == loss_out and dummy_var == dummy_var_out
), "py_func failed with multi input and output"
fluid.layers.py_func(
paddle.static.py_func(
func=dummy_func_with_multi_input_output,
x=[loss, dummy_var],
out=[loss_out, dummy_var_out],
......
......@@ -309,7 +309,7 @@ class PolicyGradient:
"""
update policy model self.model with policy gradient algorithm
"""
self.reward = fluid.layers.py_func(
self.reward = paddle.static.py_func(
func=reward_func, x=[action, length], out=reward
)
neg_log_prob = layers.cross_entropy(act_prob, action)
......
......@@ -16,6 +16,9 @@
from . import amp # noqa: F401
from . import sparsity # noqa: F401
from . import nn # noqa: F401
from .nn.common import py_func # noqa: F401
from .io import save_inference_model # noqa: F401
from .io import load_inference_model # noqa: F401
from .io import deserialize_persistables # noqa: F401
......@@ -53,7 +56,6 @@ from ..fluid.framework import Variable # noqa: F401
from ..fluid.framework import ipu_shard_guard # noqa: F401
from ..fluid.framework import set_ipu_shard # noqa: F401
from ..fluid.layers.control_flow import Print # noqa: F401
from ..fluid.layers.nn import py_func # noqa: F401
from ..fluid.parallel_executor import ParallelExecutor # noqa: F401
from ..fluid.param_attr import WeightNormParamAttr # noqa: F401
from ..fluid.optimizer import ExponentialMovingAverage # noqa: F401
......@@ -61,7 +63,6 @@ from ..fluid.io import save # noqa: F401
from ..fluid.io import load # noqa: F401
from ..fluid.io import load_program_state # noqa: F401
from ..fluid.io import set_program_state # noqa: F401
from ..fluid.io import load_vars # noqa: F401
from ..fluid.io import save_vars # noqa: F401
from ..fluid.io import batch # noqa: F401
......
......@@ -20,6 +20,7 @@ from .common import deform_conv2d # noqa: F401
from .common import conv3d # noqa: F401
from .common import conv2d_transpose # noqa: F401
from .common import conv3d_transpose # noqa: F401
from .common import py_func # noqa: F401
from ...fluid.layers import batch_norm # noqa: F401
from ...fluid.layers import bilinear_tensor_product # noqa: F401
......@@ -32,7 +33,6 @@ from ...fluid.layers import layer_norm # noqa: F401
from ...fluid.layers import multi_box_head # noqa: F401
from .loss import nce # noqa: F401
from .common import prelu # noqa: F401
from ...fluid.layers import py_func # noqa: F401
from ...fluid.layers import row_conv # noqa: F401
from ...fluid.layers import spectral_norm # noqa: F401
from ...fluid.layers import switch_case # noqa: F401
......
......@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import numpy as np
import paddle
from paddle.common_ops_import import (
LayerHelper,
......@@ -19,6 +23,7 @@ from paddle.common_ops_import import (
check_variable_and_dtype,
utils,
)
from paddle.fluid import core
from paddle.fluid.data_feeder import check_dtype
from paddle.fluid.framework import Variable, _non_static_mode, static_only
from paddle.fluid.initializer import Constant, Normal
......@@ -2083,6 +2088,325 @@ def deform_conv2d(
)
class PyFuncRegistry:
_register_funcs = []
def __init__(self, func):
if func is None or not callable(func):
raise TypeError('func must be a Python function')
self._func = func
# find named args using reflection
args = inspect.getfullargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs
self._named_args = None
else:
self._named_args = args[0]
self._id = core._append_python_callable_object_and_return_id(self)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry._register_funcs.append(self)
@classmethod
def registered_func(cls, idx):
return cls._register_funcs[idx]._func
@classmethod
def registered_func_num(cls):
return len(cls._register_funcs)
@property
def id(self):
return self._id
def __call__(self, *args):
if self._named_args is None:
func_ret = self._func()
else:
kwargs = dict()
idx = 0
for arg in self._named_args:
kwargs[arg] = args[idx]
idx += 1
func_ret = self._func(*args[idx:], **kwargs)
if not isinstance(func_ret, (list, tuple)):
func_ret = (func_ret,)
ret = []
for each_ret in func_ret:
if each_ret is None or isinstance(each_ret, core.LoDTensor):
ret.append(each_ret)
continue
if not isinstance(each_ret, np.ndarray):
each_ret = np.array(each_ret)
tensor = core.LoDTensor()
tensor.set(each_ret, core.CPUPlace())
ret.append(tensor)
return tuple(ret)
@static_only
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
This is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper = LayerHelper('py_func', **locals())
check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
if x is None:
x = []
elif isinstance(x, Variable):
x = [x]
elif isinstance(x, tuple):
x = list(x)
elif not isinstance(x, (list, tuple, Variable)):
raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
if out is None:
out_list = []
elif isinstance(out, Variable):
out_list = [out]
elif isinstance(out, tuple):
out_list = list(out)
elif isinstance(out, list):
out_list = out
else:
raise TypeError(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id = PyFuncRegistry(func).id
bwd_func_id = (
PyFuncRegistry(backward_func).id if backward_func is not None else -1
)
for each_out in out_list:
if len(each_out.shape) == 0:
raise ValueError(
'Output shapes of py_func should be provided by users manually'
)
backward_skip_vars = set()
if backward_func is not None and skip_vars_in_backward_input is not None:
if isinstance(skip_vars_in_backward_input, Variable):
skip_vars_in_backward_input = [skip_vars_in_backward_input]
fwd_in_out = [v.name for v in x]
fwd_in_out.extend([v.name for v in out_list])
fwd_in_out = set(fwd_in_out)
backward_skip_vars = set()
for v in skip_vars_in_backward_input:
if v.name not in fwd_in_out:
raise ValueError(
'Variable {} is not found in forward inputs and outputs'.format(
v.name
)
)
backward_skip_vars.add(v.name)
helper.append_op(
type='py_func',
inputs={'X': x},
outputs={'Out': out_list},
attrs={
'forward_callable_id': fwd_func_id,
'backward_callable_id': bwd_func_id,
'backward_skip_vars': list(backward_skip_vars),
},
)
return out
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
@static_only
def prelu(x, mode, param_attr=None, data_format="NCHW", name=None):
r"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册