Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4cab812e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
4cab812e
编写于
3月 02, 2022
作者:
F
fwenguang
提交者:
GitHub
3月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add transpose2 mlu kernel (#39994)
上级
4e00d2bb
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
482 addition
and
12 deletion
+482
-12
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+8
-5
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
+2
-2
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
+2
-2
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
+3
-3
paddle/fluid/operators/transpose_op_mlu.cc
paddle/fluid/operators/transpose_op_mlu.cc
+74
-0
python/paddle/fluid/tests/unittests/mlu/test_transpose_op_mlu.py
...paddle/fluid/tests/unittests/mlu/test_transpose_op_mlu.py
+393
-0
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
4cab812e
...
@@ -1157,19 +1157,22 @@ inline void TransposeFromMLUTensor(const ExecutionContext& ctx,
...
@@ -1157,19 +1157,22 @@ inline void TransposeFromMLUTensor(const ExecutionContext& ctx,
const
Tensor
*
transformed_input
,
const
Tensor
*
transformed_input
,
Tensor
*
transformed_output
,
Tensor
*
transformed_output
,
bool
need_reshape_or_alloc
)
{
bool
need_reshape_or_alloc
)
{
auto
in_dims_vec
=
phi
::
vectorize
(
transformed_input
->
dims
()
);
const
int
dim_size
=
perm
.
size
(
);
if
(
need_reshape_or_alloc
)
{
if
(
need_reshape_or_alloc
)
{
std
::
vector
<
int
>
output_shape
;
auto
input_dims
=
transformed_input
->
dims
();
for
(
int
i
=
0
;
i
<
dim_size
;
++
i
)
{
output_shape
.
push_back
(
input_dims
[
perm
[
i
]]);
}
transformed_output
->
mutable_data
<
T
>
(
transformed_output
->
mutable_data
<
T
>
(
{
in_dims_vec
[
perm
[
0
]],
in_dims_vec
[
perm
[
1
]],
in_dims_vec
[
perm
[
2
]],
framework
::
DDim
(
output_shape
.
data
(),
dim_size
),
ctx
.
GetPlace
());
in_dims_vec
[
perm
[
3
]]},
ctx
.
GetPlace
());
}
}
MLUCnnlTensorDesc
trans_in_desc
(
*
transformed_input
,
CNNL_LAYOUT_ARRAY
,
MLUCnnlTensorDesc
trans_in_desc
(
*
transformed_input
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
trans_out_desc
(
*
transformed_output
,
CNNL_LAYOUT_ARRAY
,
MLUCnnlTensorDesc
trans_out_desc
(
*
transformed_output
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
<
T
>
());
ToCnnlDataType
<
T
>
());
MLUCnnl
::
Transpose
(
ctx
,
perm
,
in_dims_vec
.
size
()
,
trans_in_desc
.
get
(),
MLUCnnl
::
Transpose
(
ctx
,
perm
,
dim_size
,
trans_in_desc
.
get
(),
GetBasePtr
(
transformed_input
),
trans_out_desc
.
get
(),
GetBasePtr
(
transformed_input
),
trans_out_desc
.
get
(),
GetBasePtr
(
transformed_output
));
GetBasePtr
(
transformed_output
));
}
}
...
...
paddle/fluid/operators/reduce_ops/reduce_max_op_mlu.cc
浏览文件 @
4cab812e
...
@@ -27,11 +27,11 @@ class ReduceMaxMLUKernel : public framework::OpKernel<T> {
...
@@ -27,11 +27,11 @@ class ReduceMaxMLUKernel : public framework::OpKernel<T> {
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
framework
::
vectorize
(
input
->
dims
()
);
auto
input_dims
=
input
->
dims
(
);
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
if
(
reduce_all
)
{
for
(
size_
t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
for
(
in
t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
}
else
{
}
else
{
...
...
paddle/fluid/operators/reduce_ops/reduce_min_op_mlu.cc
浏览文件 @
4cab812e
...
@@ -27,11 +27,11 @@ class ReduceMinMLUKernel : public framework::OpKernel<T> {
...
@@ -27,11 +27,11 @@ class ReduceMinMLUKernel : public framework::OpKernel<T> {
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
input_dims
=
framework
::
vectorize
(
input
->
dims
()
);
auto
input_dims
=
input
->
dims
(
);
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int
>
reduce_dims
;
std
::
vector
<
int
>
reduce_dims
;
if
(
reduce_all
)
{
if
(
reduce_all
)
{
for
(
size_
t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
for
(
in
t
i
=
0
;
i
<
input_dims
.
size
();
i
++
)
{
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
reduce_dims
.
push_back
(
static_cast
<
int
>
(
i
));
}
}
}
else
{
}
else
{
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op_mlu.cc
浏览文件 @
4cab812e
...
@@ -37,7 +37,7 @@ class SoftmaxWithCrossEntropyMLUKernel : public framework::OpKernel<T> {
...
@@ -37,7 +37,7 @@ class SoftmaxWithCrossEntropyMLUKernel : public framework::OpKernel<T> {
"the mlu kernel of softmax_with_cross_entropy."
));
"the mlu kernel of softmax_with_cross_entropy."
));
const
int
rank
=
logits
->
dims
().
size
();
const
int
rank
=
logits
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
backprop
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
backprop
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
@@ -45,10 +45,10 @@ class SoftmaxWithCrossEntropyMLUKernel : public framework::OpKernel<T> {
...
@@ -45,10 +45,10 @@ class SoftmaxWithCrossEntropyMLUKernel : public framework::OpKernel<T> {
// cnnl softmax only support 3-dims, regard all shape as [d1, d2, d3]
// cnnl softmax only support 3-dims, regard all shape as [d1, d2, d3]
const
int
cnnl_softmax_dims
=
3
;
const
int
cnnl_softmax_dims
=
3
;
const
int
d1
=
SizeToAxis
(
axis
,
logits
->
dims
());
const
int
d1
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logits
->
dims
());
const
int
d2_logits
=
logits
->
dims
()[
axis
];
const
int
d2_logits
=
logits
->
dims
()[
axis
];
const
int
d2_labels
=
labels
->
dims
()[
axis
];
const
int
d2_labels
=
labels
->
dims
()[
axis
];
const
int
d3
=
SizeOutAxis
(
axis
,
logits
->
dims
());
const
int
d3
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
logits
->
dims
());
// CNNL_SOFTMAX_MODE_LOW_DIMENSION has better perfermence, use it as much as
// CNNL_SOFTMAX_MODE_LOW_DIMENSION has better perfermence, use it as much as
// possible.
// possible.
...
...
paddle/fluid/operators/transpose_op_mlu.cc
0 → 100644
浏览文件 @
4cab812e
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
TransposeMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
out
->
mutable_data
<
T
>
(
ctx
.
device_context
().
GetPlace
());
TransposeFromMLUTensor
<
T
>
(
ctx
,
axis
,
x
,
out
,
false
/*need_reshape_or_alloc*/
);
}
};
template
<
typename
T
>
class
TransposeGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out_grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
reversed_axis
(
axis
);
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
reversed_axis
[
axis
[
i
]]
=
i
;
}
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
TransposeFromMLUTensor
<
T
>
(
ctx
,
reversed_axis
,
out_grad
,
x_grad
,
false
/*need_reshape_or_alloc*/
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
transpose2
,
ops
::
TransposeMLUKernel
<
float
>
,
ops
::
TransposeMLUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
TransposeMLUKernel
<
int
>
,
ops
::
TransposeMLUKernel
<
int16_t
>
,
ops
::
TransposeMLUKernel
<
uint8_t
>
,
ops
::
TransposeMLUKernel
<
int8_t
>
,
ops
::
TransposeMLUKernel
<
bool
>
);
REGISTER_OP_MLU_KERNEL
(
transpose2_grad
,
ops
::
TransposeGradMLUKernel
<
float
>
,
ops
::
TransposeGradMLUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
TransposeGradMLUKernel
<
int
>
,
ops
::
TransposeGradMLUKernel
<
int16_t
>
,
ops
::
TransposeGradMLUKernel
<
uint8_t
>
,
ops
::
TransposeGradMLUKernel
<
int8_t
>
,
ops
::
TransposeGradMLUKernel
<
bool
>
);
python/paddle/fluid/tests/unittests/mlu/test_transpose_op_mlu.py
0 → 100644
浏览文件 @
4cab812e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
,
convert_float_to_uint16
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
class
TestTransposeOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_op_type
()
self
.
initKernelType
()
self
.
initTestCase
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
'axis'
:
list
(
self
.
axis
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
def
init_op_type
(
self
):
self
.
op_type
=
"transpose2"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
40
)
self
.
axis
=
(
1
,
0
)
def
initKernelType
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
class
TestCase0
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
100
,
)
self
.
axis
=
(
0
,
)
class
TestCase1
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
,
10
)
self
.
axis
=
(
0
,
2
,
1
)
class
TestCase2
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
axis
=
(
0
,
2
,
3
,
1
)
class
TestCase3
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
)
class
TestCase4
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
,
1
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
,
5
)
class
TestCase5
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
16
,
96
)
self
.
axis
=
(
0
,
2
,
1
)
class
TestCase6
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
10
,
12
,
16
)
self
.
axis
=
(
3
,
1
,
2
,
0
)
class
TestCase7
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
10
,
2
,
16
)
self
.
axis
=
(
0
,
1
,
3
,
2
)
class
TestCase8
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
,
3
)
self
.
axis
=
(
0
,
1
,
3
,
2
,
4
,
5
,
6
,
7
)
class
TestCase9
(
TestTransposeOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
,
3
)
self
.
axis
=
(
6
,
1
,
3
,
5
,
0
,
2
,
4
,
7
)
class
TestTransposeOpBool
(
TestTransposeOp
):
def
test_check_grad
(
self
):
pass
class
TestTransposeOpBool1D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
100
,
)
self
.
axis
=
(
0
,
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool2D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
40
)
self
.
axis
=
(
1
,
0
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool3D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
,
10
)
self
.
axis
=
(
0
,
2
,
1
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool4D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
axis
=
(
0
,
2
,
3
,
1
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool5D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool6D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
,
1
)
self
.
axis
=
(
4
,
2
,
3
,
1
,
0
,
5
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool7D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
)
self
.
axis
=
(
0
,
1
,
3
,
2
,
4
,
5
,
6
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpBool8D
(
TestTransposeOpBool
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
2
,
3
,
2
,
4
,
3
,
3
)
self
.
axis
=
(
6
,
1
,
3
,
5
,
0
,
2
,
4
,
7
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"bool"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
class
TestTransposeOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'float32'
)
def
test_x_Variable_check
():
# the Input(x)'s type must be Variable
fluid
.
layers
.
transpose
(
"not_variable"
,
perm
=
[
1
,
0
,
2
])
self
.
assertRaises
(
TypeError
,
test_x_Variable_check
)
def
test_perm_list_check
():
# Input(perm)'s type must be list
fluid
.
layers
.
transpose
(
x
,
perm
=
"[1, 0, 2]"
)
self
.
assertRaises
(
TypeError
,
test_perm_list_check
)
def
test_perm_length_and_x_dim_check
():
# Input(perm) is the permutation of dimensions of Input(input)
# its length should be equal to dimensions of Input(input)
fluid
.
layers
.
transpose
(
x
,
perm
=
[
1
,
0
,
2
,
3
,
4
])
self
.
assertRaises
(
ValueError
,
test_perm_length_and_x_dim_check
)
def
test_each_elem_value_check
():
# Each element in Input(perm) should be less than Input(x)'s dimension
fluid
.
layers
.
transpose
(
x
,
perm
=
[
3
,
5
,
7
])
self
.
assertRaises
(
ValueError
,
test_each_elem_value_check
)
class
TestTransposeApi
(
unittest
.
TestCase
):
def
test_static_out
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
,
4
],
dtype
=
'float32'
)
x_trans1
=
paddle
.
transpose
(
x
,
perm
=
[
1
,
0
,
2
])
x_trans2
=
paddle
.
transpose
(
x
,
perm
=
(
2
,
1
,
0
))
place
=
paddle
.
MLUPlace
(
0
)
exe
=
paddle
.
static
.
Executor
(
place
)
x_np
=
np
.
random
.
random
([
2
,
3
,
4
]).
astype
(
"float32"
)
result1
,
result2
=
exe
.
run
(
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
x_trans1
,
x_trans2
])
expected_result1
=
np
.
transpose
(
x_np
,
[
1
,
0
,
2
])
expected_result2
=
np
.
transpose
(
x_np
,
(
2
,
1
,
0
))
np
.
testing
.
assert_array_equal
(
result1
,
expected_result1
)
np
.
testing
.
assert_array_equal
(
result2
,
expected_result2
)
def
test_dygraph_out
(
self
):
# This is an old test before 2.0 API so we need to disable static
# to trigger dygraph
paddle
.
disable_static
()
x
=
paddle
.
randn
([
2
,
3
,
4
])
x_trans1
=
paddle
.
transpose
(
x
,
perm
=
[
1
,
0
,
2
])
x_trans2
=
paddle
.
transpose
(
x
,
perm
=
(
2
,
1
,
0
))
x_np
=
x
.
numpy
()
expected_result1
=
np
.
transpose
(
x_np
,
[
1
,
0
,
2
])
expected_result2
=
np
.
transpose
(
x_np
,
(
2
,
1
,
0
))
np
.
testing
.
assert_array_equal
(
x_trans1
.
numpy
(),
expected_result1
)
np
.
testing
.
assert_array_equal
(
x_trans2
.
numpy
(),
expected_result2
)
# This is an old test before 2.0 API so we enable static again after
# dygraph test
paddle
.
enable_static
()
class
TestTAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
],
dtype
=
"float32"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
]).
astype
(
"float32"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
10
,
5
],
dtype
=
"float32"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float32"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
shape
=
[
1
,
5
],
dtype
=
"float32"
,
name
=
"data"
)
data_t
=
paddle
.
t
(
data
)
place
=
fluid
.
MLUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
data_np
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float32"
)
result
,
=
exe
.
run
(
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
data_t
])
expected_result
=
np
.
transpose
(
data_np
)
self
.
assertEqual
((
result
==
expected_result
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
]).
astype
(
"float32"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
10
,
5
]).
astype
(
"float32"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
random
([
1
,
5
]).
astype
(
"float32"
)
data
=
fluid
.
dygraph
.
to_variable
(
np_x
)
z
=
paddle
.
t
(
data
)
np_z
=
z
.
numpy
()
z_expected
=
np
.
array
(
np
.
transpose
(
np_x
))
self
.
assertEqual
((
np_z
==
z_expected
).
all
(),
True
)
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
,
3
],
dtype
=
'float32'
)
def
test_x_dimension_check
():
paddle
.
t
(
x
)
self
.
assertRaises
(
ValueError
,
test_x_dimension_check
)
class
TestMoveAxis
(
unittest
.
TestCase
):
def
test_moveaxis1
(
self
):
x_np
=
np
.
random
.
randn
(
2
,
3
,
4
,
5
,
7
).
astype
(
'float32'
)
expected
=
np
.
moveaxis
(
x_np
,
[
0
,
4
,
3
,
2
],
[
1
,
3
,
2
,
0
])
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
fluid
.
Program
()):
x
=
paddle
.
static
.
data
(
"x"
,
shape
=
[
2
,
3
,
4
,
5
,
7
],
dtype
=
'float32'
)
out
=
paddle
.
moveaxis
(
x
,
[
0
,
4
,
3
,
2
],
[
1
,
3
,
2
,
0
])
exe
=
paddle
.
static
.
Executor
()
out_np
=
exe
.
run
(
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
out
])[
0
]
self
.
assertEqual
(
np
.
array_equal
(
out_np
,
expected
),
True
)
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_np
)
out
=
paddle
.
moveaxis
(
x
,
[
0
,
4
,
3
,
2
],
[
1
,
3
,
2
,
0
])
self
.
assertEqual
(
out
.
shape
,
[
4
,
2
,
5
,
7
,
3
])
self
.
assertEqual
(
np
.
array_equal
(
out
.
numpy
(),
expected
),
True
)
paddle
.
enable_static
()
def
test_moveaxis2
(
self
):
x_np
=
np
.
random
.
randn
(
2
,
3
,
5
).
astype
(
'float32'
)
expected
=
np
.
moveaxis
(
x_np
,
-
2
,
-
1
)
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
fluid
.
Program
()):
x
=
paddle
.
static
.
data
(
"x"
,
shape
=
[
2
,
3
,
5
],
dtype
=
'float32'
)
out
=
x
.
moveaxis
(
-
2
,
-
1
)
exe
=
paddle
.
static
.
Executor
()
out_np
=
exe
.
run
(
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
out
])[
0
]
self
.
assertEqual
(
np
.
array_equal
(
out_np
,
expected
),
True
)
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_np
)
out
=
x
.
moveaxis
(
-
2
,
-
1
)
self
.
assertEqual
(
out
.
shape
,
[
2
,
5
,
3
])
self
.
assertEqual
(
np
.
array_equal
(
out
.
numpy
(),
expected
),
True
)
paddle
.
enable_static
()
def
test_error
(
self
):
x
=
paddle
.
randn
([
2
,
3
,
4
,
5
])
# src must have the same number with dst
with
self
.
assertRaises
(
AssertionError
):
paddle
.
moveaxis
(
x
,
[
1
,
0
],
[
2
])
# each element of src must be unique
with
self
.
assertRaises
(
ValueError
):
paddle
.
moveaxis
(
x
,
[
1
,
1
],
[
0
,
2
])
# each element of dst must be unique
with
self
.
assertRaises
(
ValueError
):
paddle
.
moveaxis
(
x
,
[
0
,
1
],
[
2
,
2
])
# each element of src must be integer
with
self
.
assertRaises
(
AssertionError
):
paddle
.
moveaxis
(
x
,
[
0.5
],
[
1
])
# each element of dst must be integer
with
self
.
assertRaises
(
AssertionError
):
paddle
.
moveaxis
(
x
,
[
0
],
[
1.5
])
# each element of src must be in the range of [-4, 3)
with
self
.
assertRaises
(
AssertionError
):
paddle
.
moveaxis
(
x
,
[
-
10
,
1
],
[
2
,
3
])
# each element of dst must be in the range of [-4, 3)
with
self
.
assertRaises
(
AssertionError
):
paddle
.
moveaxis
(
x
,
[
2
,
1
],
[
10
,
3
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录