Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
424700ff
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
424700ff
编写于
2月 08, 2022
作者:
N
niuliling123
提交者:
GitHub
2月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Replace clip, bce_loss, full and full_like with elementwise (#39197)
* Replace clip, bce_loss, full and full_like with elementwise
上级
23d559dd
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
179 addition
and
50 deletion
+179
-50
paddle/fluid/operators/bce_loss_op.cu
paddle/fluid/operators/bce_loss_op.cu
+35
-35
paddle/fluid/operators/clip_op.h
paddle/fluid/operators/clip_op.h
+10
-0
paddle/fluid/platform/function_traits.h
paddle/fluid/platform/function_traits.h
+13
-4
paddle/pten/kernels/funcs/elementwise_base.h
paddle/pten/kernels/funcs/elementwise_base.h
+20
-5
paddle/pten/kernels/gpu/full_kernel.cu
paddle/pten/kernels/gpu/full_kernel.cu
+83
-1
paddle/pten/kernels/gpu/scale_kernel.cu
paddle/pten/kernels/gpu/scale_kernel.cu
+4
-5
paddle/pten/kernels/primitive/compute_primitives.h
paddle/pten/kernels/primitive/compute_primitives.h
+14
-0
未找到文件。
paddle/fluid/operators/bce_loss_op.cu
浏览文件 @
424700ff
...
...
@@ -21,40 +21,45 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
struct
BCELossGradFunctor
{
T
one
=
static_cast
<
T
>
(
1.0
f
);
T
eps
=
static_cast
<
T
>
(
1e-12
);
__device__
__forceinline__
T
operator
()(
const
T
x
,
const
T
label
,
const
T
dout
)
const
{
T
term1
=
max
((
one
-
x
)
*
x
,
eps
);
return
(
dout
*
(
x
-
label
)
/
term1
);
}
};
struct
BCELossFunctor
{
T
one
;
T
neg_100
;
template
<
typename
T
>
__global__
void
GPUBCELossForward
(
const
T
*
x_data
,
const
T
*
label_data
,
T
*
out_data
,
const
int
in_numel
)
{
CUDA_KERNEL_LOOP
(
i
,
in_numel
)
{
T
x
=
x_data
[
i
];
T
label
=
label_data
[
i
];
T
one
=
static_cast
<
T
>
(
1.
);
T
neg_100
=
static_cast
<
T
>
(
-
100.
);
HOSTDEVICE
inline
BCELossFunctor
()
{
one
=
static_cast
<
T
>
(
1.0
f
);
neg_100
=
static_cast
<
T
>
(
-
100.
);
}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
,
const
T
&
label
)
const
{
PADDLE_ENFORCE
(
(
x
>=
static_cast
<
T
>
(
0
))
&&
(
x
<=
one
),
"Input is expected to be within the interval [0, 1], but recieved %f."
,
x
);
T
term1
=
max
(
real_log
(
x
),
neg_100
);
T
term2
=
max
(
real_log
(
one
-
x
),
neg_100
);
return
(((
label
-
one
)
*
term2
)
-
(
label
*
term1
));
}
};
template
<
typename
T
>
struct
BCELossGradFunctor
{
T
one
;
T
eps
;
out_data
[
i
]
=
((
label
-
one
)
*
term2
)
-
(
label
*
term1
);
HOSTDEVICE
inline
BCELossGradFunctor
()
{
one
=
static_cast
<
T
>
(
1.0
f
);
eps
=
static_cast
<
T
>
(
1e-12
);
}
}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
,
const
T
&
label
,
const
T
&
dout
)
const
{
T
term1
=
max
((
one
-
x
)
*
x
,
eps
);
return
(
dout
*
(
x
-
label
)
/
term1
);
}
};
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
BCELossCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -63,18 +68,13 @@ class BCELossCUDAKernel : public framework::OpKernel<T> {
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_numel
=
x
->
numel
();
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
platform
::
GpuLaunchConfig
config
=
platform
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x_numel
);
GPUBCELossForward
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
labels
->
data
<
T
>
(),
out_data
,
x_numel
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
labels
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out
};
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
functor
=
BCELossFunctor
<
T
>
();
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
};
...
...
paddle/fluid/operators/clip_op.h
浏览文件 @
424700ff
...
...
@@ -172,6 +172,15 @@ class ClipGradKernel : public framework::OpKernel<T> {
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
#if defined(__NVCC__) || defined(__HIPCC__)
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
d_out
,
x
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
d_x
};
auto
functor
=
ClipGradFunctor
<
T
>
(
min
,
max
);
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
ins
,
&
outs
,
functor
);
#else
int64_t
numel
=
d_out
->
numel
();
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
...
...
@@ -179,6 +188,7 @@ class ClipGradKernel : public framework::OpKernel<T> {
Transform
<
DeviceContext
>
trans
;
trans
(
context
.
template
device_context
<
DeviceContext
>(),
d_out_data
,
d_out_data
+
numel
,
x_data
,
d_x_data
,
ClipGradFunctor
<
T
>
(
min
,
max
));
#endif
}
}
};
...
...
paddle/fluid/platform/function_traits.h
浏览文件 @
424700ff
...
...
@@ -18,6 +18,18 @@ limitations under the License. */
namespace
paddle
{
namespace
platform
{
template
<
int
Arity
,
typename
...
Args
>
struct
IsPointerArgs
{
static_assert
(
Arity
==
sizeof
...(
Args
),
"Arity and Args not match!"
);
static
const
bool
value
=
false
;
};
template
<
typename
...
Args
>
struct
IsPointerArgs
<
1
,
Args
...
>
{
static_assert
(
1
==
sizeof
...(
Args
),
"Arity and Args not match!"
);
static
const
bool
value
=
std
::
is_pointer
<
typename
std
::
tuple_element
<
0
,
std
::
tuple
<
Args
...
>>::
type
>::
value
;
};
// Declare a template class with a single template parameter.
template
<
typename
>
...
...
@@ -41,10 +53,7 @@ struct FunctionTraits<ReturnType (ClassType::*)(Args...)>
template
<
typename
ReturnType
,
typename
...
Args
>
struct
FunctionTraits
<
ReturnType
(
Args
...)
>
{
static
const
size_t
arity
=
sizeof
...(
Args
);
static
const
bool
has_pointer_args
=
(
arity
==
1
)
&&
(
std
::
is_pointer
<
typename
std
::
tuple_element
<
0
,
std
::
tuple
<
Args
...
>>::
type
>::
value
);
static
const
bool
has_pointer_args
=
IsPointerArgs
<
arity
,
Args
...
>::
value
;
};
}
// namespace platform
...
...
paddle/pten/kernels/funcs/elementwise_base.h
浏览文件 @
424700ff
...
...
@@ -31,6 +31,8 @@ namespace kps = pten::kps;
#endif
#define BASE_SIZE 1 // To avoid running errors when Arity == 0 in args[Arity]
namespace
pten
{
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
,
kTernary
=
3
,
kAny
=
-
1
};
...
...
@@ -475,6 +477,15 @@ struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
0
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseFillConst
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
1
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
...
...
@@ -548,12 +559,14 @@ template <typename InT,
int
VecSize
,
bool
IsBoundary
>
__device__
void
VectorizedElementwiseKernelImpl
(
const
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
&
in
,
const
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
+
BASE_SIZE
>
&
in
,
pten
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
num
,
int
data_offset
,
Functor
func
)
{
InT
args
[
Arity
][
VecSize
];
InT
args
[
Arity
+
BASE_SIZE
][
VecSize
];
ConditionalT
<
OutT
,
NumOuts
>
result
[
VecSize
];
#pragma unroll
...
...
@@ -583,7 +596,8 @@ template <typename InT,
int
NumOuts
,
int
VecSize
>
__global__
void
VectorizedElementwiseKernel
(
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins
,
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
+
BASE_SIZE
>
ins
,
pten
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
size
,
int
main_offset
,
...
...
@@ -623,8 +637,9 @@ void ElementwiseCudaKernel(const KPDevice &ctx,
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
std
::
vector
<
DenseTensor
*>
*
outs
,
Functor
func
)
{
auto
numel
=
ins
[
0
]
->
numel
();
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins_data
;
auto
numel
=
(
*
outs
)[
0
]
->
numel
();
pten
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
+
BASE_SIZE
>
ins_data
;
pten
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs_data
;
for
(
int
i
=
0
;
i
<
Arity
;
++
i
)
{
...
...
paddle/pten/kernels/gpu/full_kernel.cu
浏览文件 @
424700ff
...
...
@@ -16,7 +16,89 @@ limitations under the License. */
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/impl/full_kernel_impl.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
namespace
pten
{
template
<
typename
InT
,
typename
OutT
=
InT
>
struct
FullFuctor
{
OutT
value
;
template
<
typename
VType
>
explicit
inline
FullFuctor
(
VType
val
)
{
value
=
static_cast
<
OutT
>
(
val
);
}
__device__
__forceinline__
OutT
operator
()()
const
{
return
static_cast
<
OutT
>
(
value
);
}
};
template
<
typename
T
,
typename
ContextT
>
void
FullKernel
(
const
ContextT
&
dev_ctx
,
const
ScalarArray
&
shape
,
const
Scalar
&
val
,
DenseTensor
*
out
)
{
out
->
Resize
(
paddle
::
framework
::
make_ddim
(
shape
.
GetData
()));
int
numel
=
out
->
numel
();
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
numel
>
0
)
{
// in transformer model the numel of outpout will be zero.
std
::
vector
<
const
DenseTensor
*>
inputs
=
{};
std
::
vector
<
DenseTensor
*>
outputs
=
{
out
};
// This function has no input, so the inputs.size() == 0. Use kUnary, but
// the data will not be loaded in the kernel because the number of
// parameters in the operator is 0
pten
::
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
inputs
,
&
outputs
,
FullFuctor
<
T
>
(
val
.
to
<
T
>
()));
}
}
template
<
typename
T
,
typename
ContextT
>
void
FullLikeKernel
(
const
ContextT
&
dev_ctx
,
const
Scalar
&
val
,
DenseTensor
*
out
)
{
auto
value
=
val
.
to
<
float
>
();
using
CommonType
=
typename
std
::
common_type
<
float
,
typename
std
::
conditional
<
std
::
is_same
<
T
,
paddle
::
platform
::
float16
>::
value
,
float
,
T
>::
type
>::
type
;
auto
common_type_value
=
static_cast
<
CommonType
>
(
value
);
PADDLE_ENFORCE_EQ
(
(
common_type_value
>=
static_cast
<
CommonType
>
(
std
::
numeric_limits
<
T
>::
lowest
()))
&&
(
common_type_value
<=
static_cast
<
CommonType
>
(
std
::
numeric_limits
<
T
>::
max
())),
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The filled value is out of range for target type, "
"current kernel type is %s, the range should between %f "
"and %f, but now value is %f."
,
typeid
(
T
).
name
(),
static_cast
<
CommonType
>
(
std
::
numeric_limits
<
T
>::
lowest
()),
static_cast
<
CommonType
>
(
std
::
numeric_limits
<
T
>::
max
()),
static_cast
<
float
>
(
value
)));
std
::
vector
<
const
DenseTensor
*>
inputs
=
{};
std
::
vector
<
DenseTensor
*>
outputs
=
{
out
};
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
// This function has no input, so the inputs.size() == 0. Use kUnary, but the
// data will not be loaded in the kernel because the number of parameters in
// the operator is 0
int
numel
=
out
->
numel
();
if
(
numel
>
0
)
{
pten
::
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
inputs
,
&
outputs
,
FullFuctor
<
T
>
(
value
));
}
}
}
// namespace pten
PT_REGISTER_KERNEL
(
full
,
GPU
,
...
...
paddle/pten/kernels/gpu/scale_kernel.cu
浏览文件 @
424700ff
...
...
@@ -28,11 +28,10 @@ struct ScaleFunctor {
InT
scale
;
bool
bias_after_scale
;
ScaleFunctor
(
InT
scale_data
,
InT
bias_data
,
bool
is_bias_after_sacle
)
{
scale
=
scale_data
;
bias
=
bias_data
;
bias_after_scale
=
is_bias_after_sacle
;
}
ScaleFunctor
(
InT
scale_data
,
InT
bias_data
,
bool
is_bias_after_sacle
)
:
bias
(
bias_data
),
scale
(
scale_data
),
bias_after_scale
(
is_bias_after_sacle
)
{}
__device__
__forceinline__
InT
operator
()(
const
InT
x
)
const
{
if
(
bias_after_scale
)
{
...
...
paddle/pten/kernels/primitive/compute_primitives.h
浏览文件 @
424700ff
...
...
@@ -414,5 +414,19 @@ __device__ __forceinline__ void Reduce(T* out,
}
}
template
<
typename
InT
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseFillConst
(
OutT
*
out
,
OpFunc
compute
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
idx
++
)
{
out
[
idx
]
=
static_cast
<
OutT
>
(
compute
());
}
}
}
// namespace kps
}
// namespace pten
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录