Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
23d559dd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
23d559dd
编写于
2月 08, 2022
作者:
B
Baibaifan
提交者:
GitHub
2月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize sharding stage3 (#39334)
上级
41eb2595
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
178 addition
and
72 deletion
+178
-72
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
...stributed/fleet/meta_parallel/sharding/sharding_stage3.py
+133
-64
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py
...istributed/fleet/meta_parallel/sharding/sharding_utils.py
+26
-4
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
+5
-1
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage3_offload.py
+14
-3
未找到文件。
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
浏览文件 @
23d559dd
...
...
@@ -35,6 +35,7 @@ from paddle.distributed.collective import _get_global_group
from
.sharding_utils
import
Type
,
ShardingClipGrad
,
device_guard
from
..pp_utils.utils
import
_all_gather
from
...utils.internal_storage
import
GradStorage
# CUDA alignment 256 bytes
alignment
=
{
"gpu"
:
256
,
}
...
...
@@ -69,6 +70,7 @@ class ShardingStage3(nn.Layer):
group
=
None
,
sync_buffers
=
False
,
device
=
"gpu"
,
segment_size
=
2
**
15
,
pertrain_sync_models
=
True
,
accumulate_grads
=
False
,
offload
=
False
,
...
...
@@ -83,6 +85,8 @@ class ShardingStage3(nn.Layer):
self
.
_accumulate_grads
=
accumulate_grads
self
.
_offload
=
offload
self
.
_sync_comm
=
sync_comm
# segmentation size
self
.
_segment_size
=
segment_size
if
not
offload
else
0
global
DEV
DEV
=
"cpu"
if
paddle
.
get_device
()
==
"cpu"
else
paddle
.
get_device
(
...
...
@@ -107,7 +111,10 @@ class ShardingStage3(nn.Layer):
self
.
_param2buffer_size
=
dict
()
# {param.name: size}
self
.
_param2buffer
=
dict
(
)
# {param.name: [(start0, end0),(start1, end1), ...]}
self
.
_trainable_params
=
dict
()
# {layer.name: [trainable_params]}
self
.
_trainable_params
=
dict
()
# {id(layer): [trainable_params]}
self
.
_unslice_params
=
set
()
# param's numel <= segment_size
self
.
_unslice_params2align
=
dict
()
# {param.name: param's align}
self
.
_grad_storages
=
dict
()
# {param.dtype: GradStorage}
assert
not
isinstance
(
optimizer
,
list
),
"Multiple optimizers are not supported now."
...
...
@@ -131,10 +138,13 @@ class ShardingStage3(nn.Layer):
self
.
_segment_rank_params
(
self
.
_layer
)
# Add unslice params to master_weight in fp16
self
.
_handle_unslice_params
()
# In the first step, record the execution order of the layer
self
.
_order_tracer
=
OrderedDict
()
self
.
_order_tracer
[
"order"
]
=
0
self
.
_order_tracer
[
"layer"
]
=
[]
self
.
_order_tracer
[
"layer"
]
=
list
()
# Register task flow
self
.
_task_flow
=
TaskFlow
()
...
...
@@ -168,8 +178,10 @@ class ShardingStage3(nn.Layer):
def
_clear_gradients
(
self
):
assert
len
(
self
.
_trainable_params
.
keys
())
>
0
current_layer_params
=
self
.
_layer
.
parameters
(
include_sublayers
=
True
)
# 1.Handle param's slice
trainable_params
=
list
(
filter
(
lambda
x
:
x
.
trainable
,
current_layer_params
))
filter
(
lambda
p
:
p
.
trainable
and
p
not
in
self
.
_unslice_params
,
current_layer_params
))
for
param
in
trainable_params
:
assert
hasattr
(
param
,
"fw_storage"
...
...
@@ -178,6 +190,9 @@ class ShardingStage3(nn.Layer):
param
.
fw_storage
.
clear_gradient
(
False
)
param
.
fw_storage
.
_gradient_set_empty
(
False
)
param
.
bw_storage
.
_clear
()
# 2.Handle unslice param
for
grad_storage
in
self
.
_grad_storages
.
values
():
grad_storage
.
buffer
.
zero_
()
# Update param memery slice
def
_update_params_slice
(
self
):
...
...
@@ -185,20 +200,25 @@ class ShardingStage3(nn.Layer):
if
not
isinstance
(
self
.
_optim
.
_param_groups
[
0
],
dict
):
slice_params
=
[
param
.
fw_storage
for
param
in
update_list
]
self
.
_optim
.
_parameter_list
=
slice_params
self
.
_optim
.
_param_groups
=
slice_params
self
.
_optim
.
_parameter_list
=
slice_params
+
list
(
self
.
_unslice_params
)
self
.
_optim
.
_param_groups
=
slice_params
+
list
(
self
.
_unslice_params
)
else
:
params_name_list
=
list
(
map
(
lambda
p
:
p
.
name
,
update_list
))
fw_storage_name_list
=
list
(
map
(
lambda
p
:
p
.
fw_storage
.
name
,
update_list
))
for
param_group
in
self
.
_optim
.
_param_groups
:
slice_
p
=
[]
p_grou
p
=
[]
for
p
in
param_group
[
'params'
]:
if
p
.
name
in
params_name_list
:
assert
hasattr
(
p
,
"fw_storage"
),
"Find {} don't have fw_storage attribute."
.
format
(
p
.
name
)
slice_p
.
append
(
p
.
fw_storage
)
param_group
[
'params'
]
=
slice_p
p_group
.
append
(
p
.
fw_storage
)
elif
p
.
name
in
fw_storage_name_list
:
p_group
.
append
(
update_list
[
fw_storage_name_list
.
index
(
p
.
name
)].
fw_storage
)
elif
p
in
self
.
_unslice_params
:
p_group
.
append
(
p
)
param_group
[
'params'
]
=
p_group
def
forward
(
self
,
*
inputs
,
**
kwargs
):
"""
...
...
@@ -213,6 +233,32 @@ class ShardingStage3(nn.Layer):
return
fw
def
_handle_unslice_params
(
self
):
buffer_size
=
dict
()
buffer_size
[
Type
.
fp32
.
value
]
=
0
buffer_size
[
Type
.
fp16
.
value
]
=
0
for
param
in
self
.
_unslice_params
:
# Updata optimizer master weights
if
param
.
dtype
==
Type
.
fp16
.
value
and
not
self
.
_offload
:
self
.
_optim
.
_master_weights
[
param
.
name
]
=
paddle
.
cast
(
param
,
Type
.
fp32
.
value
)
param2dtype
[
param
.
name
]
=
param
.
dtype
p_align
=
self
.
_param2align
(
param
)
self
.
_unslice_params2align
[
param
.
name
]
=
p_align
buffer_size
[
param
.
dtype
]
+=
param
.
_numel
()
+
p_align
# Create unslice_params'grad
for
param
in
sorted
(
list
(
self
.
_unslice_params
),
key
=
lambda
p
:
p
.
name
):
if
param
.
dtype
not
in
self
.
_grad_storages
.
keys
():
self
.
_grad_storages
[
param
.
dtype
]
=
GradStorage
(
buffer_size
[
param
.
dtype
],
dtype
=
param
.
dtype
,
device
=
self
.
_default_device
,
destination
=
self
.
_rank
,
parm2align
=
self
.
_unslice_params2align
)
self
.
_grad_storages
[
param
.
dtype
].
add_grad
(
param
,
self
.
_unslice_params2align
[
param
.
name
])
def
_segment_rank_params
(
self
,
layer
,
name
=
"last_layer"
):
"""
Flatten parameters according to layer.
...
...
@@ -233,24 +279,22 @@ class ShardingStage3(nn.Layer):
def
_add_manage_info
(
trainable_param
):
return
_PartitionParam
(
trainable_param
)
trainable_params
=
list
(
filter
(
lambda
x
:
x
.
trainable
,
current_layer_params
))
current_params
=
list
()
for
p
in
current_layer_params
:
if
p
.
trainable
and
p
.
_numel
()
>
self
.
_segment_size
:
current_params
.
append
(
_add_manage_info
(
p
))
elif
p
.
trainable
:
self
.
_unslice_params
.
add
(
_UnsliceParam
(
p
))
assert
id
(
layer
)
not
in
self
.
_trainable_params
.
keys
()
self
.
_trainable_params
[
id
(
layer
)]
=
list
(
map
(
_add_manage_info
,
trainable_params
))
self
.
_trainable_params
[
id
(
layer
)]
=
current_params
for
param
in
self
.
_trainable_params
[
id
(
layer
)]:
if
param
.
name
in
self
.
_param2buffer
.
keys
():
continue
self
.
_param2buffer
[
param
.
name
]
=
[]
# 1.Params alignment
offset
=
0
# CUDA alignment 256 bytes
size
=
param
.
_numel
()
*
align
[
param
.
dtype
]
remaining
=
size
%
alignment
[
self
.
_default_device
]
ali
=
0
if
remaining
==
0
else
alignment
[
self
.
_default_device
]
-
remaining
align_
=
ali
//
align
[
param
.
dtype
]
align_
=
self
.
_param2align
(
param
)
offset
=
align_
+
param
.
_numel
()
buffer_size
=
offset
if
offset
%
self
.
_group
.
nranks
==
0
else
offset
+
self
.
_group
.
nranks
-
(
...
...
@@ -379,7 +423,9 @@ class ShardingStage3(nn.Layer):
assert
len
(
self
.
_trainable_params
.
keys
())
>
0
current_layer_params
=
self
.
_layer
.
parameters
(
include_sublayers
=
True
)
trainable_params
=
list
(
filter
(
lambda
x
:
x
.
trainable
,
current_layer_params
))
filter
(
lambda
p
:
p
.
trainable
and
p
not
in
self
.
_unslice_params
,
current_layer_params
))
# 1.Handle param's slice
for
param
in
trainable_params
:
assert
hasattr
(
param
,
...
...
@@ -396,6 +442,19 @@ class ShardingStage3(nn.Layer):
assert
param
.
fw_storage
.
grad
is
None
param
.
fw_storage
.
_copy_gradient_from
(
param
.
bw_storage
)
update_list
.
append
(
param
)
# 2.Handle unslice param
for
grad_storage
in
self
.
_grad_storages
.
values
():
grad_storage
.
buffer
.
scale_
(
scale
=
self
.
_world_size_scaling
)
dist
.
all_reduce
(
tensor
=
grad_storage
.
buffer
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
dist
.
wait
(
tensor
=
grad_storage
.
buffer
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
return
update_list
def
get_all_parameters
(
self
,
convert2cpu
=
False
):
...
...
@@ -405,7 +464,8 @@ class ShardingStage3(nn.Layer):
assert
len
(
self
.
_trainable_params
.
keys
())
>
0
current_layer_params
=
self
.
_layer
.
parameters
(
include_sublayers
=
True
)
trainable_params
=
list
(
filter
(
lambda
x
:
x
.
trainable
,
current_layer_params
))
filter
(
lambda
p
:
p
.
trainable
and
p
not
in
self
.
_unslice_params
,
current_layer_params
))
t_flow
=
_allgather_buffer
(
trainable_params
,
self
.
_group
,
...
...
@@ -415,7 +475,7 @@ class ShardingStage3(nn.Layer):
offload
=
self
.
_offload
,
convert2cpu
=
convert2cpu
)
if
convert2cpu
:
for
param
in
current_layer
_params
:
for
param
in
trainable
_params
:
t_flow
.
full_param
[
param
.
name
].
_share_buffer_to
(
param
)
self
.
_optim
.
_parameter_list
=
self
.
_ori_parameter_list
...
...
@@ -424,7 +484,8 @@ class ShardingStage3(nn.Layer):
def
_register_backward_hooks
(
self
):
current_layer_params
=
self
.
_layer
.
parameters
(
include_sublayers
=
True
)
trainable_params
=
list
(
filter
(
lambda
x
:
x
.
trainable
,
current_layer_params
))
filter
(
lambda
p
:
p
.
trainable
and
p
not
in
self
.
_unslice_params
,
current_layer_params
))
for
param
in
trainable_params
:
allreduce_function
=
self
.
_get_allreduce_fn
(
param
)
...
...
@@ -435,42 +496,36 @@ class ShardingStage3(nn.Layer):
def
reduce
(
*
_
):
if
param
.
name
in
self
.
_task_flow
.
full_grad
.
keys
():
full_grad
=
self
.
_task_flow
.
full_grad
[
param
.
name
]
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
if
not
self
.
_accumulate_grads
:
full_grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Only support sync allreduce current rank's layer now
dist
.
all_reduce
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
dist
.
wait
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
if
not
self
.
_accumulate_grads
:
full_grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Only support sync allreduce current rank's layer now
dist
.
all_reduce
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
dist
.
wait
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
start
,
end
=
self
.
_param2buffer
[
param
.
name
][
self
.
_rank
]
if
not
self
.
_accumulate_grads
or
param
.
bw_storage
is
None
or
not
param
.
bw_storage
.
value
(
).
get_tensor
().
_is_initialized
():
param
.
bw_storage
=
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
().
clone
()
if
self
.
_offload
:
param
.
bw_storage
=
_device2cpu
(
param
.
bw_storage
,
True
)
start
,
end
=
self
.
_param2buffer
[
param
.
name
][
self
.
_rank
]
if
not
self
.
_accumulate_grads
or
param
.
bw_storage
is
None
or
not
param
.
bw_storage
.
value
(
).
get_tensor
().
_is_initialized
():
param
.
bw_storage
=
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
().
clone
()
if
self
.
_offload
:
param
.
bw_storage
=
_device2cpu
(
param
.
bw_storage
,
True
)
else
:
if
self
.
_offload
:
cpu_grad
=
_device2cpu
(
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
))
.
detach
().
clone
(),
True
)
param
.
bw_storage
=
paddle
.
add
(
param
.
bw_storage
,
cpu_grad
)
else
:
if
self
.
_offload
:
cpu_grad
=
_device2cpu
(
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
))
.
detach
().
clone
(),
True
)
param
.
bw_storage
=
paddle
.
add
(
param
.
bw_storage
,
cpu_grad
)
else
:
# param.bw_storage.add_(
# core.VarBase(full_grad._slice(start, end))
# .detach().clone())
param
.
bw_storage
=
paddle
.
add
(
param
.
bw_storage
,
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
().
clone
())
# param.bw_storage.add_(
# core.VarBase(full_grad._slice(start, end))
# .detach().clone())
param
.
bw_storage
=
paddle
.
add
(
param
.
bw_storage
,
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
(
).
clone
())
param
.
clear_gradient
(
False
)
param
.
_gradient_set_empty
(
False
)
tmp_var
=
self
.
_task_flow
.
full_grad
.
pop
(
param
.
name
)
...
...
@@ -493,6 +548,15 @@ class ShardingStage3(nn.Layer):
return
reduce
def
_param2align
(
self
,
param
):
# CUDA alignment 256 bytes
size
=
param
.
_numel
()
*
align
[
param
.
dtype
]
remaining
=
size
%
alignment
[
self
.
_default_device
]
ali
=
0
if
remaining
==
0
else
alignment
[
self
.
_default_device
]
-
remaining
align_
=
ali
//
align
[
param
.
dtype
]
return
align_
def
_redefine_opt_step
(
self
):
params_slice_func
=
self
.
_update_params_slice
opt_step
=
self
.
_optim
.
step
...
...
@@ -679,14 +743,13 @@ def _wait_layer(trainable_params,
group
,
use_calc_stream
,
offload
=
False
):
paddle
.
device
.
cuda
.
synchronize
()
for
param
in
trainable_params
:
if
param
.
status
==
"all"
:
param
.
use_count
+=
1
continue
if
param
.
name
in
task_flow
.
full_param
.
keys
():
full_param
=
task_flow
.
full_param
[
param
.
name
]
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
paddle
.
device
.
cuda
.
synchronize
()
core
.
VarBase
(
full_param
.
_slice
(
0
,
param
.
_numel
())).
_share_buffer_to
(
param
)
param
.
fw_storage
.
_clear
()
...
...
@@ -725,7 +788,7 @@ def _allgather_buffer(trainable_params,
full_param
=
_all_gather
(
param
.
fw_storage
,
group
,
use_calc_stream
=
use_calc_stream
)
# Allgather current layer in the 1st step
# Allgather current layer in the 1st step
synchronously
if
sync_wait
:
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
dist
.
wait
(
...
...
@@ -774,6 +837,12 @@ def _PartitionParam(param):
return
param
def
_UnsliceParam
(
param
):
if
not
hasattr
(
param
,
"unslice"
):
setattr
(
param
,
"unslice"
,
True
)
return
param
def
_VarBaseWrapper
(
param
):
varbase
=
param
.
fw_storage
tmp_param
=
ParamBase
(
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py
浏览文件 @
23d559dd
...
...
@@ -57,12 +57,15 @@ class ShardingClipGrad:
@
imperative_base
.
no_grad
def
_dygraph_clip
(
self
,
params_grads
):
sum_square_fp
16
=
[]
sum_square_fp32
=
[]
sum_square_fp
32
,
sum_square_fp16
=
[],
[]
unslice_params_fp32
,
unslice_params_fp16
=
[],
[]
for
p
,
g
in
params_grads
:
p_slice
=
True
# using for slice parameter in sharding stage3
if
g
is
None
or
getattr
(
p
,
'need_clip'
,
True
)
is
False
:
continue
if
hasattr
(
p
,
"unslice"
):
p_slice
=
False
merge_grad
=
g
if
g
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
...
...
@@ -72,9 +75,11 @@ class ShardingClipGrad:
sum_square
=
layers
.
reduce_sum
(
square
)
if
p
.
dtype
==
paddle
.
float16
:
sum_square_fp16
.
append
(
sum_square
)
if
p_slice
:
sum_square_fp16
.
append
(
sum_square
)
else
:
unslice_params_fp16
.
append
(
sum_square
)
elif
p
.
dtype
==
paddle
.
float32
:
sum_square_fp32
.
append
(
sum_square
)
if
p_slice
:
sum_square_fp32
.
append
(
sum_square
)
else
:
unslice_params_fp32
.
append
(
sum_square
)
# global norm of non-distributed FP16 params_and_grads
if
len
(
sum_square_fp16
)
==
0
:
...
...
@@ -85,12 +90,28 @@ class ShardingClipGrad:
global_norm_fp16
=
paddle
.
cast
(
global_norm_fp16
,
dtype
=
paddle
.
float32
)
# global norm of non-distributed FP16 params_and_grads for slice parameter
if
len
(
unslice_params_fp16
)
==
0
:
global_unslice_fp16
=
paddle
.
to_tensor
([
0.
],
dtype
=
paddle
.
float32
)
else
:
global_unslice_fp16
=
layers
.
concat
(
unslice_params_fp16
)
global_unslice_fp16
=
layers
.
reduce_sum
(
global_unslice_fp16
)
global_unslice_fp16
=
paddle
.
cast
(
global_unslice_fp16
,
dtype
=
paddle
.
float32
)
# global norm of non-distributed FP32 params_and_grads
global_norm_fp32
=
layers
.
concat
(
sum_square_fp32
)
if
len
(
sum_square_fp32
)
!=
0
else
paddle
.
to_tensor
(
[
0.
],
dtype
=
paddle
.
float32
)
global_norm_fp32
=
layers
.
reduce_sum
(
global_norm_fp32
)
# global norm of non-distributed FP32 params_and_grads for slice parameter
global_unslice_fp32
=
layers
.
concat
(
unslice_params_fp32
)
if
len
(
unslice_params_fp32
)
!=
0
else
paddle
.
to_tensor
(
[
0.
],
dtype
=
paddle
.
float32
)
global_unslice_fp32
=
layers
.
reduce_sum
(
global_unslice_fp32
)
global_unslice_var
=
global_unslice_fp16
+
global_unslice_fp32
global_norm_var
=
global_norm_fp16
+
global_norm_fp32
# add all reduce to get global norm of distributed params_and_grads
...
...
@@ -98,6 +119,7 @@ class ShardingClipGrad:
with
device_guard
(
dev_id
,
"gpu"
):
paddle
.
distributed
.
all_reduce
(
global_norm_var
,
group
=
self
.
_group
)
global_norm_var
+=
global_unslice_var
global_norm_var
=
layers
.
sqrt
(
global_norm_var
)
max_global_norm
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
global_norm_var
.
dtype
,
value
=
self
.
clip_norm
)
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
浏览文件 @
23d559dd
...
...
@@ -145,6 +145,10 @@ def train_mlp(model,
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
if
not
use_pure_fp16
:
avg_loss
.
backward
()
else
:
...
...
@@ -215,7 +219,7 @@ def test_stage2_stage3():
stage3_params
[
i
].
numpy
(),
stage3_params_add
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
1e-
6
)
atol
=
1e-
4
)
# fp16
stage2_params
=
train_mlp
(
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
浏览文件 @
23d559dd
...
...
@@ -28,7 +28,6 @@ from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3 import Shar
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_utils
import
ShardingScaler
epoch
=
10
batch_size
=
32
paddle
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
base_lr
=
0.1
...
...
@@ -80,6 +79,7 @@ def train_mlp(model,
use_pure_fp16
=
False
,
accumulate_grad
=
False
,
offload
=
False
,
batch_size
=
100
,
convert2cpu
=
False
):
group
=
paddle
.
distributed
.
new_group
([
0
,
1
])
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
...
...
@@ -91,7 +91,11 @@ def train_mlp(model,
scaler
=
ShardingScaler
(
scaler
)
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
)
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
,
accumulate_grads
=
accumulate_grad
)
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
...
...
@@ -115,10 +119,15 @@ def train_mlp(model,
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
accumulate_grad
:
avg_loss
=
avg_loss
/
5
if
not
use_pure_fp16
:
avg_loss
.
backward
()
else
:
scaler
.
scale
(
avg_loss
).
backward
()
if
not
accumulate_grad
:
if
not
use_pure_fp16
:
optimizer
.
step
()
...
...
@@ -172,12 +181,14 @@ def test_stage3_offload():
atol
=
1e-2
)
# fp32 accumulate grad offload
stage3_params
=
train_mlp
(
mlp5
,
use_pure_fp16
=
False
,
accumulate_grad
=
True
)
stage3_params
=
train_mlp
(
mlp5
,
use_pure_fp16
=
False
,
batch_size
=
20
,
accumulate_grad
=
True
)
stage3_params_offload
=
train_mlp
(
mlp6
,
use_pure_fp16
=
False
,
accumulate_grad
=
True
,
offload
=
True
,
batch_size
=
20
,
convert2cpu
=
True
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录