Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4152d399
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4152d399
编写于
7月 24, 2020
作者:
X
xujiaqi01
提交者:
GitHub
7月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fleet metric (#25463)
* add fleet distributed metrics * test=develop
上级
98899b73
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
485 addition
and
0 deletion
+485
-0
python/paddle/fleet/metrics/metric.py
python/paddle/fleet/metrics/metric.py
+372
-0
python/paddle/fluid/tests/unittests/test_fleet_metric.py
python/paddle/fluid/tests/unittests/test_fleet_metric.py
+113
-0
未找到文件。
python/paddle/fleet/metrics/metric.py
浏览文件 @
4152d399
...
...
@@ -11,3 +11,375 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fleet Metrics"""
import
paddle.fluid
as
fluid
import
math
import
numpy
as
np
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
as
fleet
def
sum
(
input
,
scope
=
None
):
"""
distributed sum in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): sum array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_add(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("sum array: ", paddle.fleet.sum(res))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
input
,
Variable
):
input
=
np
.
array
(
scope
.
find_var
(
input
.
name
).
get_tensor
())
elif
isinstance
(
input
,
str
):
input
=
np
.
array
(
scope
.
find_var
(
input
).
get_tensor
())
old_shape
=
np
.
array
(
input
.
shape
)
output
=
np
.
copy
(
input
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
input
,
output
,
mode
=
"sum"
)
output
=
output
.
reshape
(
old_shape
)
return
output
def
max
(
input
,
scope
=
None
):
"""
distributed max in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): max array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_max(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("max array: ", paddle.fleet.max(res))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
input
,
Variable
):
input
=
np
.
array
(
scope
.
find_var
(
input
.
name
).
get_tensor
())
elif
isinstance
(
input
,
str
):
input
=
np
.
array
(
scope
.
find_var
(
input
).
get_tensor
())
old_shape
=
np
.
array
(
input
.
shape
)
output
=
np
.
copy
(
input
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
input
,
output
,
mode
=
"max"
)
output
=
output
.
reshape
(
old_shape
)
return
output
def
min
(
input
,
scope
=
None
):
"""
distributed min in fleet
Args:
input(numpy.array|Variable|string): output of a layer
scope(Scope): specific scope
Returns:
global_metric(numpy.array): min array
Example:
.. code-block:: python
# in model.py
input = fluid.layers.cast(some_input, dtype='float32')
cnt = fluid.layers.reduce_sum(input)
global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp = fluid.layers.elementwise_min(cnt, global_cnt)
fluid.layers.assign(tmp, global_cnt)
# in train.py, after train or infer
res = np.array(scope.find_var(global_cnt.name).get_tensor())
print("min array: ", paddle.fleet.min(res))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
input
,
Variable
):
input
=
np
.
array
(
scope
.
find_var
(
input
.
name
).
get_tensor
())
elif
isinstance
(
input
,
str
):
input
=
np
.
array
(
scope
.
find_var
(
input
).
get_tensor
())
old_shape
=
np
.
array
(
input
.
shape
)
output
=
np
.
copy
(
input
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
input
,
output
,
mode
=
"min"
)
output
=
output
.
reshape
(
old_shape
)
return
output
def
auc
(
stat_pos
,
stat_neg
,
scope
=
None
):
"""
distributed auc in fleet
Args:
stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
scope(Scope): specific scope
Returns:
auc_value(float): auc value
Example:
.. code-block:: python
# in model.py
similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
binary_predict = fluid.layers.concat(
input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)
# in train.py, after train or infer
pos = np.array(scope.find_var(stat_pos.name).get_tensor())
neg = np.array(scope.find_var(stat_neg.name).get_tensor())
print("auc: ", paddle.fleet.auc(pos, neg))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
stat_pos
,
Variable
):
stat_pos
=
np
.
array
(
scope
.
find_var
(
stat_pos
.
name
).
get_tensor
())
elif
isinstance
(
stat_pos
,
str
):
stat_pos
=
np
.
array
(
scope
.
find_var
(
stat_pos
).
get_tensor
())
if
isinstance
(
stat_neg
,
Variable
):
stat_neg
=
np
.
array
(
scope
.
find_var
(
stat_neg
.
name
).
get_tensor
())
elif
isinstance
(
stat_neg
,
str
):
stat_neg
=
np
.
array
(
scope
.
find_var
(
stat_neg
).
get_tensor
())
# auc pos bucket shape
old_pos_shape
=
np
.
array
(
stat_pos
.
shape
)
# reshape to one dim
stat_pos
=
stat_pos
.
reshape
(
-
1
)
global_pos
=
np
.
copy
(
stat_pos
)
*
0
# mpi allreduce
fleet
.
_role_maker
.
_all_reduce
(
stat_pos
,
global_pos
)
# reshape to its original shape
global_pos
=
global_pos
.
reshape
(
old_pos_shape
)
# auc neg bucket
old_neg_shape
=
np
.
array
(
stat_neg
.
shape
)
stat_neg
=
stat_neg
.
reshape
(
-
1
)
global_neg
=
np
.
copy
(
stat_neg
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
stat_neg
,
global_neg
)
global_neg
=
global_neg
.
reshape
(
old_neg_shape
)
# calculate auc
num_bucket
=
len
(
global_pos
[
0
])
area
=
0.0
pos
=
0.0
neg
=
0.0
new_pos
=
0.0
new_neg
=
0.0
total_ins_num
=
0
for
i
in
range
(
num_bucket
):
index
=
num_bucket
-
1
-
i
new_pos
=
pos
+
global_pos
[
0
][
index
]
total_ins_num
+=
global_pos
[
0
][
index
]
new_neg
=
neg
+
global_neg
[
0
][
index
]
total_ins_num
+=
global_neg
[
0
][
index
]
area
+=
(
new_neg
-
neg
)
*
(
pos
+
new_pos
)
/
2
pos
=
new_pos
neg
=
new_neg
auc_value
=
None
if
pos
*
neg
==
0
or
total_ins_num
==
0
:
auc_value
=
0.5
else
:
auc_value
=
area
/
(
pos
*
neg
)
fleet
.
_role_maker
.
_barrier_worker
()
return
auc_value
def
mae
(
abserr
,
total_ins_num
,
scope
=
None
):
"""
distributed mae in fleet
Args:
abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
mae(float): mae value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
res = np.array(scope.find_var(abserr.name).get_tensor())
print("mae: ", paddle.fleet.mae(res, total_ins_num))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
abserr
,
Variable
):
abserr
=
np
.
array
(
scope
.
find_var
(
abserr
.
name
).
get_tensor
())
elif
isinstance
(
abserr
,
str
):
abserr
=
np
.
array
(
scope
.
find_var
(
abserr
).
get_tensor
())
old_metric_shape
=
np
.
array
(
abserr
.
shape
)
abserr
=
abserr
.
reshape
(
-
1
)
global_metric
=
np
.
copy
(
abserr
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
abserr
,
global_metric
)
global_metric
=
global_metric
.
reshape
(
old_metric_shape
)
mae_value
=
global_metric
[
0
]
/
total_ins_num
return
mae_value
def
rmse
(
sqrerr
,
total_ins_num
,
scope
=
None
):
"""
distributed rmse in fleet
Args:
sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
rmse(float): rmse value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
res = np.array(scope.find_var(sqrerr.name).get_tensor())
print("rmse: ", paddle.fleet.rmse(res, total_ins_num))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
sqrerr
,
Variable
):
sqrerr
=
np
.
array
(
scope
.
find_var
(
sqrerr
.
name
).
get_tensor
())
elif
isinstance
(
sqrerr
,
str
):
sqrerr
=
np
.
array
(
scope
.
find_var
(
sqrerr
).
get_tensor
())
old_metric_shape
=
np
.
array
(
sqrerr
.
shape
)
sqrerr
=
sqrerr
.
reshape
(
-
1
)
global_metric
=
np
.
copy
(
sqrerr
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
sqrerr
,
global_metric
)
global_metric
=
global_metric
.
reshape
(
old_metric_shape
)
rmse_value
=
math
.
sqrt
(
global_metric
[
0
]
/
total_ins_num
)
return
rmse_value
def
mse
(
sqrerr
,
total_ins_num
,
scope
=
None
):
"""
distributed mse in fleet
Args:
sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
total_ins_num(int|float): total train/infer instance count
scope(Scope): specific scope
Returns:
mse(float): mse value
Example:
.. code-block:: python
# in model.py
sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))
# in train.py, after train or infer
metric = np.array(scope.find_var(sqrerr.name).get_tensor())
print("mse: ", paddle.fleet.mse(metric, total_ins_num))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
sqrerr
,
Variable
):
sqrerr
=
np
.
array
(
scope
.
find_var
(
sqrerr
.
name
).
get_tensor
())
elif
isinstance
(
sqrerr
,
str
):
sqrerr
=
np
.
array
(
scope
.
find_var
(
sqrerr
).
get_tensor
())
old_metric_shape
=
np
.
array
(
sqrerr
.
shape
)
sqrerr
=
sqrerr
.
reshape
(
-
1
)
global_metric
=
np
.
copy
(
sqrerr
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
sqrerr
,
global_metric
)
global_metric
=
global_metric
.
reshape
(
old_metric_shape
)
mse_value
=
global_metric
[
0
]
/
total_ins_num
return
mse_value
def
acc
(
correct
,
total
,
scope
=
None
):
"""
distributed accuracy in fleet
Args:
correct(numpy.array|Variable|string): correct Variable
total(numpy.array|Variable): total Variable
scope(Scope): specific scope
Returns:
acc(float): accuracy value
Example:
.. code-block:: python
# in model.py
correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)
global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp1 = fluid.layers.elementwise_min(correct, global_correct)
fluid.layers.assign(tmp1, global_correct)
global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
tmp2 = fluid.layers.elementwise_min(total, global_total)
fluid.layers.assign(tmp2, global_total)
# in train.py, after train or infer
correct_num = np.array(scope.find_var(correct.name).get_tensor())
total_num = np.array(scope.find_var(total.name).get_tensor())
print("accuracy: ", paddle.fleet.acc(correct_num, total_num))
"""
fleet
.
_role_maker
.
_barrier_worker
()
if
scope
is
None
:
scope
=
fluid
.
global_scope
()
if
isinstance
(
correct
,
Variable
):
correct
=
np
.
array
(
scope
.
find_var
(
correct
.
name
).
get_tensor
())
elif
isinstance
(
correct
,
str
):
correct
=
np
.
array
(
scope
.
find_var
(
correct
).
get_tensor
())
if
isinstance
(
total
,
Variable
):
total
=
np
.
array
(
scope
.
find_var
(
total
.
name
).
get_tensor
())
elif
isinstance
(
total
,
str
):
total
=
np
.
array
(
scope
.
find_var
(
total
).
get_tensor
())
global_correct_num
=
np
.
copy
(
correct
)
*
0
global_total_num
=
np
.
copy
(
total
)
*
0
fleet
.
_role_maker
.
_all_reduce
(
correct
,
global_correct_num
)
fleet
.
_role_maker
.
_all_reduce
(
total
,
global_total_num
)
return
float
(
global_correct_num
[
0
])
/
float
(
global_total_num
[
0
])
python/paddle/fluid/tests/unittests/test_fleet_metric.py
0 → 100644
浏览文件 @
4152d399
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet metric."""
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
os
import
unittest
import
paddle.fleet.metrics.metric
as
metric
from
paddle.fluid.incubate.fleet.base.role_maker
import
GeneralRoleMaker
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
as
fleet
class
TestFleetMetric
(
unittest
.
TestCase
):
"""Test cases for fleet metric."""
def
setUp
(
self
):
"""Set up, set envs."""
class
FakeFleet
:
"""Fake fleet only for test."""
def
__init__
(
self
):
"""Init."""
self
.
gloo
=
fluid
.
core
.
Gloo
()
self
.
gloo
.
set_rank
(
0
)
self
.
gloo
.
set_size
(
1
)
self
.
gloo
.
set_prefix
(
"123"
)
self
.
gloo
.
set_iface
(
"lo"
)
self
.
gloo
.
set_hdfs_store
(
"./tmp_test_metric"
,
""
,
""
)
self
.
gloo
.
init
()
def
_all_reduce
(
self
,
input
,
output
,
mode
=
"sum"
):
"""All reduce using gloo."""
input_list
=
[
i
for
i
in
input
]
ans
=
self
.
gloo
.
all_reduce
(
input_list
,
mode
)
for
i
in
range
(
len
(
ans
)):
output
[
i
]
=
1
def
_barrier_worker
(
self
):
"""Fake barrier worker, do nothing."""
pass
self
.
fleet
=
FakeFleet
()
fleet
.
_role_maker
=
self
.
fleet
def
test_metric_1
(
self
):
"""Test cases for metrics."""
train
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train
,
startup
):
t
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
,
1
],
value
=
1
,
dtype
=
'int64'
,
persistable
=
True
,
force_cpu
=
True
)
t1
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
,
1
],
value
=
1
,
dtype
=
'int64'
,
persistable
=
True
,
force_cpu
=
True
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
startup
)
metric
.
sum
(
t
,
scope
)
metric
.
max
(
t
,
scope
)
metric
.
min
(
t
,
scope
)
metric
.
auc
(
t
,
t1
,
scope
)
metric
.
mae
(
t1
,
3
,
scope
)
metric
.
rmse
(
t1
,
3
,
scope
)
metric
.
mse
(
t1
,
3
,
scope
)
metric
.
acc
(
t
,
t1
,
scope
)
metric
.
sum
(
str
(
t
.
name
),
scope
)
metric
.
max
(
str
(
t
.
name
),
scope
)
metric
.
min
(
str
(
t
.
name
),
scope
)
metric
.
auc
(
str
(
t1
.
name
),
str
(
t
.
name
),
scope
)
metric
.
mae
(
str
(
t1
.
name
),
3
,
scope
)
metric
.
rmse
(
str
(
t1
.
name
),
3
,
scope
)
metric
.
mse
(
str
(
t1
.
name
),
3
,
scope
)
metric
.
acc
(
str
(
t
.
name
),
str
(
t1
.
name
),
scope
)
arr
=
np
.
array
([
1
,
2
,
3
,
4
])
metric
.
sum
(
arr
)
metric
.
max
(
arr
)
metric
.
min
(
arr
)
arr1
=
np
.
array
([[
1
,
2
,
3
,
4
]])
arr2
=
np
.
array
([[
1
,
2
,
3
,
4
]])
arr3
=
np
.
array
([
1
,
2
,
3
,
4
])
metric
.
auc
(
arr1
,
arr2
)
metric
.
mae
(
arr
,
3
)
metric
.
rmse
(
arr
,
3
)
metric
.
mse
(
arr
,
3
)
metric
.
acc
(
arr
,
arr3
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录