未验证 提交 274b135b 编写于 作者: B baoachun 提交者: GitHub

add mkldnn reshape_transpose_matmul fuse pass ut and op version check (#37468)

* add mkldnn reshape_transpose_matmul fuse pass ut and op version check

* update reshape_transpose_matmul_mkldnn_fuse_pass ut

* update ut
上级 3d7e737c
......@@ -16,6 +16,7 @@
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
......@@ -178,3 +179,8 @@ void ReshapeTransposeMatmulMkldnnFusePass::ApplyImpl(ir::Graph *graph) const {
REGISTER_PASS(reshape_transpose_matmul_mkldnn_fuse_pass,
paddle::framework::ir::ReshapeTransposeMatmulMkldnnFusePass);
REGISTER_PASS_CAPABILITY(reshape_transpose_matmul_mkldnn_fuse_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination().EQ(
"matmul", 1));
......@@ -90,6 +90,7 @@ endif()
if (WITH_MKLDNN)
set_tests_properties(test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_mkldnn_reshape_transpose_matmul_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_prelu_op PROPERTIES TIMEOUT 300)
set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
from functools import reduce
num = 32 * 64
class TestReshapeTransposeMatmulMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
transpose_X = draw(st.booleans())
transpose_Y = draw(st.booleans())
alpha = draw(st.floats(min_value=0.01, max_value=2))
axis = draw(st.sampled_from([[0, 2, 1, 3]]))
shape = draw(
st.sampled_from([[0, 64, -1, 32], [0, 32, -1, 64], [-1, 32, 1, 64]
]))
batch_size = draw(st.integers(min_value=1, max_value=4))
channel = draw(st.integers(min_value=1, max_value=64))
input_dim = draw(st.sampled_from([32, 64]))
def generate_input1(attrs):
shape_x = [attrs[3]['batch_size'], attrs[3]['channel'], num]
return np.random.random(shape_x).astype(np.float32)
def generate_input2(attrs):
shape_x = [attrs[3]['batch_size'], attrs[3]['channel'], num]
input_volume = reduce(lambda x, y: x * y, shape_x)
matmul_shape = [i for i in attrs[0]['shape']]
if 0 in matmul_shape:
for i in range(len(matmul_shape)):
if matmul_shape[i] == 0:
matmul_shape[i] = shape_x[i]
shape_volume = reduce(lambda x, y: x * y, matmul_shape)
if -1 in matmul_shape:
for i in range(len(matmul_shape)):
if matmul_shape[i] == -1:
matmul_shape[i] = int(abs(input_volume / shape_volume))
# Only for transpose axis [0, 2, 1, 3]
matmul_shape[1], matmul_shape[2] = matmul_shape[2], matmul_shape[1]
if attrs[2]['transpose_X'] and attrs[2]['transpose_Y']:
shape_y = [
matmul_shape[0], matmul_shape[1], matmul_shape[-1],
int(num / matmul_shape[-1])
]
elif attrs[2]['transpose_X']:
shape_y = matmul_shape
elif attrs[2]['transpose_Y']:
shape_y = matmul_shape
else:
shape_y = [
matmul_shape[0], matmul_shape[1], matmul_shape[-1],
int(num / matmul_shape[-1])
]
return np.random.random(shape_y).astype(np.float32)
attrs = [{
"shape": shape
}, {
"axis": axis
}, {
"transpose_X": transpose_X,
"transpose_Y": transpose_Y,
"alpha": alpha
}, {
'batch_size': batch_size,
'channel': channel,
'input_dim': input_dim
}]
ops_config = [{
"op_type": "reshape2",
"op_inputs": {
"X": ["input_data1"]
},
"op_outputs": {
"Out": ["reshape2_output"],
"XShape": ["reshape2_xshape"]
},
"op_attrs": {
'shape': attrs[0]['shape']
},
}, {
"op_type": "transpose2",
"op_inputs": {
"X": ["reshape2_output"]
},
"op_outputs": {
"Out": ["transpose2_output"],
"XShape": ["transpose2_xshape"]
},
"op_attrs": {
'axis': attrs[1]['axis']
},
}, {
"op_type": "matmul",
"op_inputs": {
"X": ["transpose2_output"],
"Y": ["input_data2"]
},
"op_outputs": {
"Out": ["matmul_output"]
},
"op_attrs": {
'transpose_X': attrs[2]['transpose_X'],
'transpose_Y': attrs[2]['transpose_Y'],
'alpha': attrs[2]['alpha'],
"fused_reshape_X": [],
"fused_reshape_Y": [],
"fused_transpose_X": [],
"fused_transpose_Y": [],
"fused_reshape_Out": [],
"fused_transpose_Out": []
}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data1":
TensorConfig(data_gen=partial(generate_input1, attrs)),
"input_data2":
TensorConfig(data_gen=partial(generate_input2, attrs))
},
outputs=["matmul_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["matmul"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False, passes=["reshape_transpose_matmul_mkldnn_fuse_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册