未验证 提交 3d7e737c 编写于 作者: B baoachun 提交者: GitHub

update mkldnn batch_norm_activation fuse pass ut (#37402)

* update mkldnn batch_norm_activation fuse pass ut

* update ut

* update mkldnn batch_norm_act_fuse_pass ut

* update batch_norm_act_fuse_pass ut

* update ut
上级 44112817
......@@ -67,6 +67,12 @@ FuseBatchNormActOneDNNPass::FuseBatchNormActOneDNNPass() {
.AddAttr("epsilon")
.IsNumGE(0.0f)
.IsNumLE(0.001f)
.End()
.AddAttr("trainable_statistics")
.IsBoolEQ(false)
.End()
.AddAttr("is_test")
.IsBoolEQ(true)
.End();
AddOpCompat(OpCompat("relu"))
......@@ -108,7 +114,6 @@ void FuseBatchNormActOneDNNPass::FuseBatchNormAct(
GET_IR_NODE_FROM_SUBGRAPH(act, act, bn_act_pattern);
auto *bn_op = batch_norm->Op();
if (bn_op->HasAttr("use_mkldnn")) {
PADDLE_ENFORCE(
BOOST_GET_CONST(bool, bn_op->GetAttr("use_mkldnn")),
......@@ -117,19 +122,13 @@ void FuseBatchNormActOneDNNPass::FuseBatchNormAct(
"is used."));
}
if (bn_op->HasAttr("trainable_statistics")) {
PADDLE_ENFORCE(
!BOOST_GET_CONST(bool, bn_op->GetAttr("trainable_statistics")),
platform::errors::PreconditionNotMet(
"The BatchNorm+Act fusion may happen only when mean and variance "
"are not calculated by current batch statistics."));
}
if (bn_op->HasAttr("is_test")) {
auto *act_op = act->Op();
if (act_op->HasAttr("use_mkldnn")) {
PADDLE_ENFORCE(
BOOST_GET_CONST(bool, bn_op->GetAttr("is_test")),
BOOST_GET_CONST(bool, bn_op->GetAttr("use_mkldnn")),
platform::errors::PreconditionNotMet(
"The BatchNorm+Act fusion may happen only during inference."));
"The BatchNorm+Act fusion may happen only when oneDNN library "
"is used."));
}
bn_op->SetAttr("use_mkldnn", true);
......
......@@ -65,9 +65,9 @@ TEST(FuseBatchNormActOneDNNPass, ThrowIsTestTrainableStats) {
// No fusion in this attribute configuration
constexpr int removed_nodes_count = 0;
EXPECT_THROW(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count),
paddle::platform::EnforceNotMet);
EXPECT_TRUE(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count));
EXPECT_TRUE(test::AssertOpsCount(graph, {{"batch_norm", 1}, {"relu", 1}}));
}
TEST(FuseBatchNormActOneDNNPass, FuseIsTest) {
......@@ -123,9 +123,9 @@ TEST(FuseBatchNormActOneDNNPass, ThrowTrainableStats) {
// No fusion in this attribute configuration
constexpr int removed_nodes_count = 0;
EXPECT_THROW(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count),
paddle::platform::EnforceNotMet);
EXPECT_TRUE(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count));
EXPECT_TRUE(test::AssertOpsCount(graph, {{"batch_norm", 1}, {"relu", 1}}));
}
TEST(FuseBatchNormActOneDNNPass, AllAttrsFalse) {
......@@ -149,9 +149,9 @@ TEST(FuseBatchNormActOneDNNPass, AllAttrsFalse) {
// No fusion in this attribute configuration
constexpr int removed_nodes_count = 0;
EXPECT_THROW(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count),
paddle::platform::EnforceNotMet);
EXPECT_TRUE(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count));
EXPECT_TRUE(test::AssertOpsCount(graph, {{"batch_norm", 1}, {"relu", 1}}));
}
TEST(FuseBatchNormActOneDNNPass, ThrowUseMkldnn) {
......@@ -176,9 +176,9 @@ TEST(FuseBatchNormActOneDNNPass, ThrowUseMkldnn) {
// No fusion in this attribute configuration
constexpr int removed_nodes_count = 0;
EXPECT_THROW(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count),
paddle::platform::EnforceNotMet);
EXPECT_TRUE(test::RunPassAndAssert(&graph, "batch_norm_act_fuse_pass", "x",
"act_y", removed_nodes_count));
EXPECT_TRUE(test::AssertOpsCount(graph, {{"batch_norm", 1}, {"relu", 1}}));
}
TEST(FuseBatchNormActOneDNNPass, pass_op_version_check) {
......
......@@ -94,6 +94,7 @@ if (WITH_MKLDNN)
set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250)
set_tests_properties(test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_conv_transpose_bias_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_conv_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 300)
endif()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -11,68 +11,110 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test for fusion of batch norm and activation."""
from __future__ import print_function
import unittest
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestScaleMatmulMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
data_layout = draw(st.sampled_from(["NCHW", "NHWC"]))
epsilon = draw(st.floats(min_value=0.0, max_value=0.001))
fuse_with_relu = draw(st.booleans())
is_test = draw(st.sampled_from([True]))
momentum = draw(st.floats(min_value=0.0, max_value=5))
trainable_statistics = False
use_global_stats = draw(st.booleans())
use_mkldnn1 = draw(st.sampled_from([True]))
use_cudnn = draw(st.booleans())
use_mkldnn2 = draw(st.sampled_from([True]))
batch_size = draw(st.integers(min_value=1, max_value=4))
channel = draw(st.integers(min_value=1, max_value=64))
input_dim1 = draw(st.integers(min_value=1, max_value=512))
input_dim2 = draw(st.integers(min_value=1, max_value=512))
def generate_input():
shape = [input_dim1, input_dim2]
if data_layout == "NCHW":
shape.insert(0, channel)
shape.insert(0, batch_size)
else:
shape.append(channel)
shape.insert(0, batch_size)
return np.random.random(shape).astype(np.float32)
def generate_weight():
return np.random.random(channel).astype(np.float32)
batch_norm_op = OpConfig(
type="batch_norm",
inputs={
"X": ["input_data"],
"Bias": ["Bias"],
"Mean": ["Mean"],
"Scale": ["Scale"],
"Variance": ["Variance"]
},
outputs={
"Y": ["norm_output"],
"MeanOut": ["Mean"],
"VarianceOut": ["Variance"],
"SavedMean": ["SavedMean"],
"SavedVariance": ["SavedVariance"]
},
attrs={
"data_layout": data_layout,
"epsilon": epsilon,
"fuse_with_relu": fuse_with_relu,
"is_test": is_test,
"momentum": momentum,
"trainable_statistics": trainable_statistics,
"use_global_stats": use_global_stats,
"use_mkldnn": use_mkldnn1
})
relu_op = OpConfig(
type="relu",
inputs={"X": ["norm_output"]},
outputs={"Out": ["relu_output"]},
attrs={"use_cudnn": use_cudnn,
"use_mkldnn": use_mkldnn2})
model_net = [batch_norm_op, relu_op]
program_config = ProgramConfig(
ops=model_net,
weights={
"Bias": TensorConfig(data_gen=partial(generate_weight)),
"Mean": TensorConfig(data_gen=partial(generate_weight)),
"Scale": TensorConfig(data_gen=partial(generate_weight)),
"Variance": TensorConfig(data_gen=partial(generate_weight))
},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input))
},
outputs=["relu_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["batch_norm"], (1e-5, 1e-5)
import paddle.fluid as fluid
from inference_pass_test import InferencePassTest
from paddle import enable_static
from paddle.fluid.core import PassVersionChecker
enable_static()
class BnReluOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 3, 100, 100], dtype="float32")
bn_out = fluid.layers.batch_norm(
input=data, is_test=True, use_global_stats=self.global_stats)
relu_out = fluid.layers.relu(bn_out)
self.feeds = {
"data": np.random.random((1, 3, 100, 100)).astype("float32")
}
self.fetch_list = [relu_out]
self.enable_mkldnn = True
def set_params(self):
self.global_stats = False
self.pass_name = "batch_norm_act_fuse_pass"
def test_check_output(self):
self.check_output()
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
class BnReluGlobalStatsOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 3, 100, 100], dtype="float32")
bn_out = fluid.layers.batch_norm(
input=data, is_test=True, use_global_stats=self.global_stats)
relu_out = fluid.layers.relu(bn_out)
self.feeds = {
"data": np.random.random((1, 3, 100, 100)).astype("float32")
}
self.fetch_list = [relu_out]
self.enable_mkldnn = True
def set_params(self):
self.global_stats = True
self.pass_name = "batch_norm_act_fuse_pass"
def test_check_output(self):
self.check_output()
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
def test(self):
self.run_and_statis(quant=False, passes=["batch_norm_act_fuse_pass"])
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册